OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13685–13699

A novel super-high extinction ratio comb-filter based on cascaded Mach-Zehnder Gires-Tournois interferometers with dispersion compensation

Yu Zhang, Wencai Huang, Xiulin Wang, Huiying Xu, and Zhiping Cai  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13685-13699 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a novel Mach-Zehnder Gires- Tournois interferometer (MZGTI) and a scheme to realize super high extinction ratio flat-top comb filter based on cascaded MZGTIs. Two sets of novel multi-cavity transmissive Gires-Tournois etalon (MCT-GTE) composed of cascaded Mach-Zehnder interferometer loops are added to the two arms of Mach-Zehnder interferometer (MZI) respectively, which forms a new MZI, i.e., MZGTI. MZGTI has the same characteristics as Michelson-Gires-Tournois interferometer (MGTI), which is suitable for dense wavelength division multiplexing systems. The super-high extinction ratio comb filter (SHERCF) we proposed has good passband flatness and wide bandwidth (passband or stopband bandwidth) when the extinction ratio is fairly high, which is quite superior to MGTI or MZGTI. For the severe chromatic dispersion problems, we propose a set of multi-cavity ring resonator (MC-RR) as a tunable dispersion compensator (TDC) for MZGTI, which is a set of cascaded ring resonators. Moreover, we demonstrate that a set of cascaded MC-RRs is an efficient dispersion compensator for SHERCF with the optimized results.

© 2009 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.3120) Integrated optics : Integrated optics devices
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Fiber Optics

Original Manuscript: April 2, 2009
Revised Manuscript: July 1, 2009
Manuscript Accepted: July 1, 2009
Published: July 24, 2009

Yu Zhang, Wencai Huang, Xiulin Wang, Huiying Xu, and Zhiping Cai, "A novel super-high extinction ratio comb-filter based on cascaded Mach-Zehnder Gires-Tournois interferometers with dispersion compensation," Opt. Express 17, 13685-13699 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high- birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 16(2), 410–412 (2004). [CrossRef]
  2. W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987). [CrossRef]
  3. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398-399, 1–9 (2001). [CrossRef]
  4. D. W. Huang, T. H. Chiu and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” OFC, Anaheim, California, WDD80(2001).
  5. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000). [CrossRef]
  6. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988). [CrossRef]
  7. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000). [CrossRef]
  8. J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998). [CrossRef]
  9. R. Kashyap, “A simplified approach to the Bragg grating based Michelson and the in-coupler Bragg grating add-drop multiplexer,” OFC, San Diego, CA, TuN3 (1999).
  10. M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division- multiplexed optical systems,” J. Lightwave Technol. 12(2), 226–230 (1994). [CrossRef]
  11. Y. L. Huang, J. Li, G. Y. Kai, and X. Y. Dong, “High extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer and a fiber loop mirror,” Chin. Opt. Lett. 1, 63–64 (2003).
  12. Q. J. Wang, Y. Zhang and Y. C. Soh, “An efficient all-fiber interleaving filter using fiber Gires- Tournois etalons on a Michelson interferometer,” OFC, Anaheim, California, OW170(2006).
  13. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004). [CrossRef]
  14. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007). [CrossRef] [PubMed]
  15. L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007). [CrossRef]
  16. D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004). [CrossRef]
  17. X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).
  18. M. Shirasaki, “chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997). [CrossRef]
  19. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999). [CrossRef]
  20. O. Schwelb, “Transmission,group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004). [CrossRef]
  21. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990). [CrossRef]
  22. Z. P. Wang and Y. J. Chen, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” ECOC, Glasgow, Scotland, We4. P.44(2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited