OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13819–13829

Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography

Tong Wu, Zhihua Ding, Kai Wang, Minghui Chen, and Chuan Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13819-13829 (2009)
http://dx.doi.org/10.1364/OE.17.013819


View Full Text Article

Enhanced HTML    Acrobat PDF (2107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a fiber based probe that is capable of two-dimensional scanning applicable in optical coherence tomography (OCT). Based on the resonance of the fiber cantilever with asymmetry structure which has two distinguished resonant frequencies in orthogonal directions, Lissajous pattern is produced suitable for two-dimensional scanning upon a sample. Orthogonal resonances of the fiber cantilever are simultaneously excited by single piezo bender actuator with one driving signal consisting of two components corresponding to above-mentioned two resonant frequencies. By integrating a backward-placed two-dimensional position sensitive detector (PSD) into the probe, real-time lateral position of the scanning pattern is registered simultaneously for image reconstruction. Dynamical characteristics of the fiber cantilever are experimentally studied with special consideration on factors determining the resolution of the scanning pattern, including frequency and amplitude ratios between two components of the driving signal and fetching duration used for an en face image. With the developed probe implemented in our established OCT system, en face OCT images of typical samples are obtained with satisfying resolution and contrast, demonstrating the feasibility of such fiber cantilever with asymmetry structure for realizing two dimensional scanning by single actuator, potentially applicable to endoscopic OCT imaging.

© 2009 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 19, 2009
Revised Manuscript: June 29, 2009
Manuscript Accepted: July 14, 2009
Published: July 24, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Tong Wu, Zhihua Ding, Kai Wang, Minghui Chen, and Chuan Wang, "Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography," Opt. Express 17, 13819-13829 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991). [CrossRef] [PubMed]
  2. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova N. M. Shakhova, L. B. Snopova, A. V. Shakhov I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 1, 432-440 (1997), http://www.opticsinfobase.org/abstract.cfm?id=63224. [CrossRef] [PubMed]
  3. G. J. Tearney, S.A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545, (1996). [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  5. Y. Pan. T. Xie, and G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26,1966-1968 (2001). [CrossRef]
  6. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003). [CrossRef] [PubMed]
  7. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997). [CrossRef]
  8. X. Liu, M.l J. Cobb, and Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004). [CrossRef] [PubMed]
  9. T. Ono, "Optical beam deflector using a piezoelectric bimorph actuator," Sens. Actuators A: Physical 22, 726-728 (1990). [CrossRef]
  10. J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004). [CrossRef]
  11. J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991). [CrossRef]
  12. D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).
  13. Z. Xu, The theory of elasticity (Higher Education Press, Beijing, 1983).
  14. T. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. P. Chen, "Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography," Opt. Lett. 30, 53-55 (2005). [CrossRef] [PubMed]
  15. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. P. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005). [CrossRef] [PubMed]
  16. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob and C. Yang, "Paired-angle-rotation scanning optical coherence tomography forward-imaging probe," Opt. Lett. 31, 1265-1267 (2006). [CrossRef] [PubMed]
  17. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997). [CrossRef]
  18. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004). [CrossRef] [PubMed]
  19. M. T. Myaing, D. J. MacDonald, and X. D. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  20. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, "Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens," Opt. Express 16,20588-20596 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20588. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited