OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13851–13859

Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation

Namje Kim, Jaeheon Shin, Eundeok Sim, Chul Wook Lee, Dae-Su Yee, Min Yong Jeon, Yudong Jang, and Kyung Hyun Park  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13851-13859 (2009)
http://dx.doi.org/10.1364/OE.17.013851


View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe+-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

© 2009 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 24, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 7, 2009
Published: July 24, 2009

Citation
Namje Kim, Jaeheon Shin, Eundeok Sim, Chul Wook Lee, Dae-Su Yee, Min Yong Jeon, Yudong Jang, and Kyung Hyun Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation," Opt. Express 17, 13851-13859 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007). [CrossRef]
  3. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).
  4. E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991). [CrossRef]
  5. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008). [CrossRef]
  6. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005). [CrossRef]
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
  8. J. R. Demers, R. T. Logan, Jr., and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, Victoria, Canada (2007), pp. 92–95.
  9. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008). [CrossRef]
  10. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998). [CrossRef]
  11. S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008). [CrossRef]
  12. R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999). [CrossRef]
  13. R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002). [CrossRef]
  14. S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005). [CrossRef]
  15. S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996). [CrossRef]
  16. H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008). [CrossRef]
  17. K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003). [CrossRef]
  18. O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003). [CrossRef]
  19. D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004). [CrossRef] [PubMed]
  20. Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006). [CrossRef]
  21. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992). [CrossRef]
  22. S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004). [CrossRef]
  23. S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003). [CrossRef]
  24. G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993). [CrossRef]
  25. B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975). [CrossRef]
  26. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003). [CrossRef]
  27. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited