OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14063–14068

Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators

Tao Chu, Nobuhide Fujioka, and Masashige Ishizaka  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 14063-14068 (2009)
http://dx.doi.org/10.1364/OE.17.014063


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A wavelength tunable laser with an SOA and external double micro-ring resonator, which is fabricated with silicon photonic-wire waveguides, is demonstrated. To date, it is the first wavelength tunable laser fabricated with silicon photonic technology. The device is ultra compact, and its external resonator footprint is 700 × 450 μm, which is about 1/25 that of conventional tunable lasers fabricated with SiON waveguides. The silicon resonator shows a wide tuning range covering the C or L bands for DWDM optical communication. We obtained a maximum tuning span of 38 nm at a tuning power consumption of 26 mW, which is about 1/8 that of SiON-type resonators.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3560) Lasers and laser optics : Lasers, ring
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4780) Lasers and laser optics : Optical resonators
(160.6840) Materials : Thermo-optical materials
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 1, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 22, 2009
Published: July 29, 2009

Citation
Tao Chu, Nobuhide Fujioka, and Masashige Ishizaka, "Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators," Opt. Express 17, 14063-14068 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ishizaka and H. Yamazaki, “Wavelength tunable laser using silica double ring resonators,” Electron. and Communications in Japan 89, 34–41 (2006).
  2. T. Takeguchi, M. Takahashi, K. Suzuki, S. Watanabe, and H. Yamazaki, “Wavelength tunable laser with silica-waveguide ring resonators,” IEICE Trans. Electron , E92-C, 198–204 (2009). [CrossRef]
  3. K. Yashiki, K. Sato, T. Morimoto, S. Sudo, K. Naniwae, S. Ae, K. Shiba, N. Suzuki, T. Sasaki, and K. Kudo, “Wavelength-selectable light sources fabricated using advanced microarray-selective epitaxy,” IEEE Photon. Technol. Lett. 16(7), 1619–1621 (2004). [CrossRef]
  4. B. Mason, G. A. Fish, S. P. DenBaars, and L. A. Coldren, “Widely tunable sampled grating DBR laser with integrated electroabsorption modular,” IEEE Photon. Technol. Lett. 11(6), 638–640 (1999). [CrossRef]
  5. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
  6. L. C. Kimerling, “Siliconmicro photonics,” Appl. Surf. Sci. 159–160(1-2), 8–13 (2000). [CrossRef]
  7. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004). [CrossRef] [PubMed]
  8. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, “A cascaded silicon Raman laser,” Nat. Photonics 2(3), 170–174 (2008). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  10. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  11. T. Chu, H. Yamada, A. Gomyo, J. Ushida, S. Ishida, and Y. Arakawa, “Reconfigurable optical add-drop multiplexer (R-OADM) based on silicon photonic crystal slab waveguides,” Proc. SPIE 6376, 63760I–1-8 (2006).
  12. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-25-10109 . [CrossRef] [PubMed]
  13. T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron . E92-C, 217–223 (2009). [CrossRef]
  14. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  15. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9460 . [CrossRef] [PubMed]
  16. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Tunable, Fourth-Order Silicon Microring-Resonator Add-Drop Filters,” presented at the European Conference on Optical Communication, Berlin, Germany, 17 Sept. 2007.
  17. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622 . [CrossRef] [PubMed]
  18. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005). [CrossRef]
  19. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupler lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited