OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14166–14171

On control of chaos and synchronization in the vibronic laser

B. Ratajska-Gadomska and W. Gadomski  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 14166-14171 (2009)
http://dx.doi.org/10.1364/OE.17.014166


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown theoretically that the method of time delayed incoherent optical feedback ensures control of chaotic dynamics in the vibronic alexandrite laser. The numerical solutions of the laser equations including the optical delayed feedback term are presented and the conditions for stabilization of the laser output are discussed. The possibility of synchronization of two chaotic vibronic lasers is reported when one of them is driven by the output of the other, thus giving the basis for secure communication.

© 2009 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.1540) Lasers and laser optics : Chaos
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 2, 2009
Revised Manuscript: July 24, 2009
Manuscript Accepted: July 27, 2009
Published: August 3, 2009

Citation
B. Ratajska-Gadomska and W. Gadomski, "On control of chaos and synchronization in the vibronic laser," Opt. Express 17, 14166-14171 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett. 64(11), 1196–1199 (1990). [CrossRef] [PubMed]
  2. F. T. Arecchi, W. Gadomski, and R. Meucci, “Generation of chaotic dynamics by feedback on a laser,” Phys. Rev. A 34(2), 1617–1620 (1986). [CrossRef] [PubMed]
  3. F. T. Arecchi, R. Meucci, and W. Gadomski, “Laser dynamics with competing instabilities,” Phys. Rev. Lett. 58(21), 2205–2208 (1987). [CrossRef] [PubMed]
  4. R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arecchi, “Experimental control of chaos by means of weak parametric perturbations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(4), R2528–R2531 (1994). [CrossRef] [PubMed]
  5. S. Bielawski, D. Derozier, and P. Glorieux, “Controlling unstable periodic orbits by a delayed continuous feedback,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R971–R974 (1994). [CrossRef] [PubMed]
  6. R. Roy, T. W. Murphy, T. D. Maier, Z. Gills, and E. R. Hunt, “Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system,” Phys. Rev. Lett. 68(9), 1259–1262 (1992). [CrossRef] [PubMed]
  7. R. Dykstra, D. Y. Tang, and N. R. Heckenberg, “Experimental control of a single-mode laser chaos by using continuous, time-delayed feedback,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6596–6598 (1998). [CrossRef]
  8. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  9. G. Hek and V. Rottschafer, “Semiconductor laser with filtered optical feedback: bridge between conventional feedback and optical injection”, ENOC-2005, Eindhoven, Netherlands, 7–12 August (2005).
  10. S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger, “All-optical noninvasive control of unstable steady states in a semiconductor laser,” Phys. Rev. Lett. 97(21), 213902 (2006). [CrossRef] [PubMed]
  11. M. G. Kovalsky, “On control of Chaos in the Kerr lens mode locked Ti:Sapphire laser,” Opt. Commun. 260(1), 265–270 (2006). [CrossRef]
  12. W. Gadomski and B. Ratajska-Gadomska, “Self-pulsations in the phonon assisted lasers,” J. Opt. Soc. Am. B 15(11), 2681–2688 (1998). [CrossRef]
  13. W. Gadomski and B. Ratajska-Gadomska, “Homoclinic orbits and chaos in the vibronic short-cavity standing-wave alexandrite laser,” J. Opt. Soc. Am. B 17(2), 188–197 (2000). [CrossRef]
  14. W. Gadomski, B. Ratajska-Gadomska, and R. Meucci, “Homoclinic dynamics if the vibronic laser,” Chaos Solitons Fractals 17(2-3), 387–396 (2003). [CrossRef]
  15. W. Gadomski and B. Ratajska-Gadomska, “Chaotic dynamics of the vibronic laser” in Recent Advances in Laser Dynamics: Control and Synchronization, A.N. Pisarchik, ed. (Research Signpost, Kerala, India, 2008)
  16. B. Ratajska-Gadomska and W. Gadomski, “Quantum theory of the vibronic solid-state laser,” J. Opt. Soc. Am. B 16(5), 848–860 (1999). [CrossRef]
  17. H. Ogilvy, M. J. Withford, R. P. Mildren, J. A. Piper, M. J Withford, R. P Mildren, and J. A Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81(5), 637–644 (2005). [CrossRef]
  18. K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Phys. Lett. A 170(6), 421–428 (1992). [CrossRef]
  19. J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable CW Alexandrite Laser,” IEEE J. Quantum Electron. 16(2), 120–121 (1980). [CrossRef]
  20. L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Phys. Rev. A 44(4), 2374–2383 (1991). [CrossRef] [PubMed]
  21. A. Uchida, S. Yoshimori, M. Shinozuka, T. Ogawa, and F. Kannari, “Chaotic on off keying for secure communications,” Opt. Lett. 26(12), 866–868 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited