OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 14298–14311

N-qubit W state of spatially separated single molecule magnets

Xin-You Lü, Pei-Jun Song, Ji-Bing Liu, and Xiaoxue Yang  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 14298-14311 (2009)
http://dx.doi.org/10.1364/OE.17.014298


View Full Text Article

Enhanced HTML    Acrobat PDF (564 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple scheme is proposed to generate a N-qubit W state of spatially separated single molecule magnets (SMM) in a cavity-fiber-cavity system. In the present scheme, the framework consisting of entangled qubits can be expediently designed according to our needs. By quantitatively discussing the case of N=4, we show that the effects of SMM’s spontaneous decay and photon leakage out of fiber can be suppressed in our scheme due to the presence of virtual excited processes in SMM and fiber modes. Moreover, we also show that the present scheme is robust with respect to some deviations of experimental parameters, and as a result, the present investigation provides a research clue for realizing multi-partite entanglement between distant SMMs solid-state nanostructures, which may result in a substantial impact on the progress of multi-node quantum information network.

© 2009 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 26, 2009
Revised Manuscript: July 6, 2009
Manuscript Accepted: July 9, 2009
Published: July 31, 2009

Citation
Xin-You Lü, Pei-Jun Song, Ji-Bing Liu, and Xiaoxue Yang, "N-qubitW state of spatially separated single molecule magnets," Opt. Express 17, 14298-14311 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000)
  2. C. H. Bennett and D. P. DiVincenzo, "Quantum information and computation," Nature (London) 404, 247-255 (2000). [CrossRef]
  3. D.P. DiVincenzo, "Quantum Computation," Science 270, 255-261 (1995). [CrossRef]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef]
  5. Hiroki Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Optics Express,  14, 3453-3460 (2006). [CrossRef] [PubMed]
  6. A. K. Ekert, "Quantum cryptography based on Bells theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  7. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-4086 (1995). [CrossRef] [PubMed]
  8. W.-X. Yang, Z.-M. Zhan, and J.-H. Li, "Efficient scheme for multipartite entanglement and quantum information processing with trapped ions," Phys. Rev. A 72, 062108(1-6) (2005). [CrossRef]
  9. I. L. Chuang and Y. Yamamoto, "Simple quantum computer," Phys. Rev. A 52, 3489-3496 (1995). [CrossRef] [PubMed]
  10. A. Karlsson and M. Bourennane, "Quantum teleportation using three-particle entanglement," Phys. Rev. A 58, 4394-4400 (1998). [CrossRef]
  11. M. Hillery, V. Buˇzek, and A. Berthiaume, "Quantum secret sharing," Phys. Rev. A 59, 1829-1834 (1999). [CrossRef]
  12. G. A. Durkin, C. Simon, and D. Bouwmeester, "Multiphoton Entanglement Concentration and Quantum Cryptography," Phys. Rev. Lett. 88, 187902(1-4) (2002). [CrossRef] [PubMed]
  13. N. Gisin and S. Massar, "Optimal Quantum Cloning Machines," Phys. Rev. Lett. 79, 2153-2156 (1997). [CrossRef]
  14. D. M. Greenberger, M. A. Horne, A. Shimony, A. Zeilinger, "Bell’s theorem without inequalities," Am. J. Phys. 58, 1131-1143 (1990). [CrossRef]
  15. W. D¨ur, G. Vidal, and J. I. Cirac, "Three qubits can be entangled in two inequivalent ways," Phys. Rev. A 62, 062314(1-12) (2000). [CrossRef]
  16. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, "Experimental Realization of a Three-Qubit Entangled W State, " Phys. Rev. Lett. 92, 077901(1-4) (2004). [CrossRef] [PubMed]
  17. H. J. Briegel and R. Raussendorf, "Persistent Entanglement in Arrays of Interacting Particles," Phys. Rev. Lett. 86, 910-913 (2001). [CrossRef] [PubMed]
  18. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement," Nature (London) 403, 515-519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, "Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement," Phys. Rev. Lett. 82, 1345-1349 (1999). [CrossRef] [PubMed]
  19. R. J. Nelson, D. G. Cory, and S. Lloyd, "Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance," Phys. Rev. A 61, 022106(1-5) (2000). [CrossRef]
  20. X. B. Zou, K. Pahlke, and W. Mathis, "Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay," Phys. Rev. A 68, 024302(1-4) (2003). [CrossRef]
  21. C. Yu, X. X. Yi, H. Song, and D. Mei, "Robust preparation of Greenberger-Horne-Zeilinger andWstates of three distant atoms," Phys. Rev. A 75, 044301(1-4) (2007). [CrossRef]
  22. D. Gonta, S. Fritzsche, and T. Radtke, "Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity," Phys. Rev. A 77, 062312(1-13) (2008). [CrossRef]
  23. T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, "Polarization-entangled W state using parametric downconversion," Phys. Rev. A 66, 064301(1-4) (2002). [CrossRef]
  24. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, "Experimental Realization of a Three-Qubit Entangled W State," Phys. Rev. Lett. 92, 077901(1-4) (2004). [CrossRef] [PubMed]
  25. H. Mikami, Y. Li, and T. Kobayashi, "Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion," Phys. Rev. A 70, 052308(1-7) (2004). [CrossRef]
  26. G.-C. Guo and Y.-S. Zhang, "Scheme for preparation of the W state via cavity quantum electrodynamics," Phys. Rev. A 65, 054302(1-3) (2002). [CrossRef]
  27. B. Yu, Z.-W. Zhou and G.-C. Guo, "The generation of multi-atom entanglement via the detection of cavity decay," J. Opt. B: Quantum Semiclass. Opt. 6, 86-90 (2004). [CrossRef]
  28. Y.-F. Xiao, Z.-F. Han, J. Gao and G.-C. Guo, "Generation of multi-atom Dicke states through the detection of cavity decay," J. Phys. B: At. Mol. Opt. Phys. 39, 485-491 (2006). [CrossRef]
  29. Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, "Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics," Phys. Rev. A 75, 012310(1-5) (2007). [CrossRef]
  30. N. Kiesel, C. Schmid, U. Weber, G. T´oth, O. G¨uhne, R. Ursin, and H. Weinfurter, "Experimental Analysis of a Four-Qubit Photon Cluster State," Phys. Rev. Lett. 95, 210502(1-4) (2005). [CrossRef] [PubMed]
  31. X. L. Zhang, K. L. Gao,and M. Feng, "Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics," Phys. Rev. A 75, 034308(1-4) (2007). [CrossRef]
  32. Y.-K. Bai and Z. D. Wang, "Multipartite entanglement in four-qubit cluster-class states," Phys. Rev. A 77, 032313(1-6) (2008). [CrossRef]
  33. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, "Experimental generation of four-mode continuous-variable cluster states," Phys. Rev. A 78, 012301(1-6) (2008). [CrossRef]
  34. Z.-R. Lin, G.-P. Guo, T. Tu,F.-Y. Zhu, and G.-C. Guo, "Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator," Phys. Rev. Lett. 101, 230501(1-4) (2008). [CrossRef] [PubMed]
  35. Gao-xiang Li, S. Ke, and Z. Ficek, "Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity," Phys. Rev. A 79, 033827(1-9) (2009). [CrossRef]
  36. C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, "Control and Measurement of Three-Qubit Entangled States," Science 304, 1478-1480 (2004). [CrossRef] [PubMed]
  37. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, "Experimental entanglement of four particles," Nature (London) 404, 256-259 (2000). [CrossRef] [PubMed]
  38. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, "Step-by-step engineered multiparticle entanglement," Science 288, 2024-2028 (2000). [CrossRef] [PubMed]
  39. F. Bodoky and M. Blaauboer, "Production of multipartite entanglement for electron spins in quantum dots," Phys. Rev. A 76, 052309(1-7) (2007). [CrossRef]
  40. L.-M. Duan and H. J. Kimble, "Efficient Engineering of Multiatom Entanglement through Single-Photon Detections," Phys. Rev. Lett. 90, 253601(1-4) (2003). [CrossRef] [PubMed]
  41. R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, "Magnetic bistability in a metal-ion cluster," Nature (London) 365141-143 (1993). [CrossRef]
  42. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, "Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets," Nature (London) 383145-147 (1996). [CrossRef]
  43. K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, "Magnetization dynamics in the singlemolecule magnet Fe8 under pulsed microwave irradiation," Phys. Rev. B 75 064408(1-12) (2007). [CrossRef]
  44. M. Misiorny and J. Barna, "Magnetic switching of a single molecular magnet due to spin-polarized current," Phys. Rev. B, 75 134425(1-5) (2007). [CrossRef]
  45. W. Wernsdorfer and R. Sessoli, "Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters," Science 284133-135 (1999). [CrossRef] [PubMed]
  46. M. N. Leuenberger and D. Loss, "Quantum computing in molecular magnets," Nature (London) 410789-793 (2001). [CrossRef] [PubMed]
  47. 4. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, "Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets," Phys. Rev. B 74 054416(1-6) (2006). [CrossRef]
  48. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, "Transverse acoustic wave in molecular magnets via electromagnetically induced transparency," Phys. Rev. B 75 184423(1-6) (2007). [CrossRef]
  49. Y. Wu and X. Yang, "Four-wave mixing in molecular magnets via electromagnetically induced transparency," Phys. Rev. B 76 054425(1-6) (2007). [CrossRef]
  50. Y. Wu and X. Yang, "Giant Kerr nonlinearities and solitons in a crystal of molecular magnets," Appl. Phys. Lett. 91 094104(1-3) (2007). [CrossRef]
  51. X.-Y. L¨u, Ji-Bing Liu, Y¨u Tian, Pei-Jun Song, and Zhi-Ming Zhan, "Single molecular magnets as a source of continuous-variable entanglement," Europhys. Lett. 82 64003(1-6) (2008). [CrossRef]
  52. S. Mancini and S. Bose, "Distributed Quantum Computation via Optical Fibers," Phys. Rev. A 70, 022307(1-4) (2004). [CrossRef]
  53. L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, "Generation of entanglement via adiabatic passage," Phys. Rev. A 76 062304(1-7) (2007). [CrossRef]
  54. P. Peng and F.-L. Li, "Entangling two atoms in spatially separated cavities through both photon emission and absorption processes," Phys. Rev. A, 75, 062320(1-7) (2007). [CrossRef]
  55. S.-Y. Ye, Z.-R. Zhong,and S.-B. Zheng, "Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities," Phys. Rev. A, 77, 014303(1-4) (2008). [CrossRef]
  56. X.-Y. L¨u, J.-B. Liu, C.-L. Ding, and J.-H. Li, "Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms," Phys. Rev. A, 78, 032305(1-6) (2008); X.-Y. L¨u, L.-G. Si, M. Wang, S.-Z. Zhang and X. Yang, "Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction," J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008). [CrossRef]
  57. Z. Yin and F. Li, "Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber," Phys. Rev. A 75, 012324(1-11) (2007). [CrossRef]
  58. Y. Wu, J. Saldana, and Y. Zhu, "Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency," Phys. Rev. A 67 013811(1-5) (2003). [CrossRef]
  59. Y. Wu and L. Deng, "Achieving multifrequency mode entanglement with ultraslow multiwave mixing," Optics Letters 29, 1144-1146 (2004). [CrossRef] [PubMed]
  60. Y. Wu and X. Yang, "Carrier-envelope phase-dependent atomic coherence and quantum beats," Phys. Rev. A 76 013832(1-4) (2007). [CrossRef]
  61. Y. Wu and X. Yang, "Strong-Coupling Theory of Periodically Driven Two-Level Systems," Phys. Rev. lett. 98 013601(1-4) (2007). [CrossRef] [PubMed]
  62. C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).
  63. T. Pellizzari, "Quantum Networking with Optical Fibres," Phys. Rev. Lett. 79, 5242-5245 (1997). [CrossRef]
  64. Y. Wu, "Effective Raman theory for a three-level atom in the configuration," Phys. Rev. A 54, 1586-1592 (1996). [CrossRef] [PubMed]
  65. Y. Wu and P. T. Leung, "Lasing threshold for whispering-gallery-mode microsphere lasers," Phys. Rev. A 60, 630-633 (1999). [CrossRef]
  66. J. M. Raimond, M. Brune, and S. Haroche,"Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys.,  73565-582 (2001). [CrossRef]
  67. K. J. Vahala,"Optical microcavities," Nature,  424839-846 (2003). [CrossRef] [PubMed]
  68. B. Min, L. Yang, and K. Vahala, "controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities," Appl. Phys. Lett. 87 181109(1-3) (2005). [CrossRef]
  69. M. Hossein-Zadeh, and K. Vahala, "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Optics Express 15166-175 (2007). [CrossRef] [PubMed]
  70. D. W. Vernooy and H. J. Kimble, "Quantum structure and dynamics for atom galleries," Phys. Rev. A 551239 (1997). [CrossRef]
  71. Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, "Quantum computation without strict strong coupling on a silicon chip," Phys. Rev. A 551239 (1997).
  72. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108(1-3) (2006). [CrossRef]
  73. P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, "Quantum-information transfer in a coupled resonator waveguide," Phys. Rev. A 79, 042339(1-4) (2009). [CrossRef]
  74. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics," Phys. Rev. Lett. 91, 043902(1-4) (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited