OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14481–14494

A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography

Runqiang Han, Jimin Liang, Xiaochao Qu, Yanbin Hou, Nunu Ren, Jingjing Mao, and Jie Tian  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14481-14494 (2009)
http://dx.doi.org/10.1364/OE.17.014481


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As a novel modality of molecular imaging, bioluminescence tomography (BLT) is used to in vivo observe and measure the biological process at cellular and molecular level in small animals. The core issue of BLT is to determine the distribution of internal bioluminescent sources from optical measurements on external surface. In this paper, a new algorithm is presented for BLT source reconstruction based on adaptive hp-finite element method. Using adaptive mesh refinement strategy and intelligent permissible source region, we can obtain more accurate information about the location and density of sources, with the robustness, stability and efficiency improved. Numerical simulations and physical experiment were both conducted to verify the performance of the proposed algorithm, where the optical data on phantom surface were obtained via Monte Carlo simulation and CCD camera detection, respectively. The results represent the merits and potential of our algorithm for BLT source reconstruction.

© 2009 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 26, 2009
Revised Manuscript: July 17, 2009
Manuscript Accepted: July 22, 2009
Published: August 3, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Runqiang Han, Jimin Liang, Xiaochao Qu, Yanbin Hou, Nunu Ren, Jingjing Mao, and Jie Tian, "A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography," Opt. Express 17, 14481-14494 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002). [CrossRef] [PubMed]
  3. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, “Development of the first bioluminescence ct scanner,” Radiology 229(P), 566 (2003).
  4. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003). [CrossRef] [PubMed]
  5. D. Piwnica-Worms, D. P. Schuster, and J. R. Garbow, “Molecular imaging of host-pathogen interactions in intact small animals,” Cell. Microbiol. 6(4), 319–331 (2004). [CrossRef] [PubMed]
  6. R. Weissleder, “Scaling down imaging: molecular mapping of cancer in mice,” Nat. Rev. Cancer 2(1), 11–18 (2002). [CrossRef] [PubMed]
  7. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008). [CrossRef] [PubMed]
  8. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004). [CrossRef] [PubMed]
  9. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6756 . [CrossRef] [PubMed]
  10. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005). [CrossRef] [PubMed]
  11. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8211 . [CrossRef] [PubMed]
  12. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-20-15640 . [CrossRef] [PubMed]
  13. M. Ainsworth and B. Senior, “Aspects of an adaptive hp-finite element method: Adaptive strategy conforming approximation and efficient solvers,” Comput. Methods Appl. M 150(1-4), 65–87 (1997). [CrossRef]
  14. M. Ainsworth, “A preconditioner based on domain decomposition for hp-finite element approximation on quasi-uniform meshes,” SIAM J. Numer. Anal. 33(4), 1358–1376 (1996). [CrossRef]
  15. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004). [CrossRef] [PubMed]
  16. MOSE, http://www.mosetm.net/ .
  17. A. Cong and G. Wang, “A finite-element-based reconstruction method for 3D fluorescence tomography,” Opt. Express 13(24), 9847–9857 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-24-9847 . [CrossRef] [PubMed]
  18. J. Welch, and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York, 1995).
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  20. M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9(6), 1336–1346 (2004). [CrossRef] [PubMed]
  21. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  22. J. J. Duderstadt, and L. J. Hamilton, Nuclear Reactor analysis (Wiley, New York, 1976).
  23. S. S. Rao, The finite element method in engineering, (Butterworth-Heinemann, Boston, 1999).
  24. P. E. Gill, W. Murray, and M. Wright, Practical optimization, (Academic Press, New York, 1981).
  25. Y. Hou, J. Tian, Y. Wu, J. Liang, and X. He, “A new numerical method for BLT forward problem based on high-order finite elements,” Commun. Numer. Methods Eng. 6, 667–681 (2008).
  26. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007). [CrossRef]
  27. I. Babuška and B. Guo, “Approximation properties of the hp-version of the finite element method,” Comput. Methods Appl. Mech. Eng. 133(3-4), 319–346 (1996). [CrossRef]
  28. C. Schwab, “p- and hp- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics” (Oxford University Press, USA, 1998).
  29. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-10-8062 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited