OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14502–14510

Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors

Ming-Liang Ren and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14502-14510 (2009)
http://dx.doi.org/10.1364/OE.17.014502


View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 3, 2009
Revised Manuscript: July 16, 2009
Manuscript Accepted: July 16, 2009
Published: August 3, 2009

Citation
Ming-Liang Ren and Zhi-Yuan Li, "Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors," Opt. Express 17, 14502-14510 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]
  3. P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003). [CrossRef]
  4. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004). [CrossRef] [PubMed]
  5. A. Piskarskas, V. Smilgevi Ius, A. Stabinis, V. Jarutis, V. Pasiskevi Ius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second-harmonic generation in periodically poled KTiOPO4 excited by the Bessel beam,” Opt. Lett. 24(15), 1053–1055 (1999). [CrossRef]
  6. S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998). [CrossRef]
  7. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24(12), 793–795 (1999). [CrossRef]
  8. G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004). [CrossRef]
  9. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001). [CrossRef]
  10. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001). [CrossRef] [PubMed]
  11. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Me’riadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 19(9), 2094–2101 (2002). [CrossRef]
  12. T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005). [CrossRef]
  13. S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995). [CrossRef]
  14. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Second-harmonic generation of a continuous wave diode-pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett. 12(12), 1014–1016 (1987). [CrossRef] [PubMed]
  15. V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999). [CrossRef]
  16. H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000). [CrossRef]
  17. B. Shi, Z. M. Jiang, and X. Wang, “Defective photonic crystals with greatly enhanced second-harmonic generation,” Opt. Lett. 26(15), 1194–1196 (2001). [CrossRef]
  18. F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004). [CrossRef]
  19. Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006). [CrossRef]
  20. L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006). [CrossRef]
  21. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007). [CrossRef] [PubMed]
  22. J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007). [CrossRef]
  23. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008). [CrossRef]
  24. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003). [CrossRef] [PubMed]
  25. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984). [CrossRef]
  26. V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, Berlin, 1997), Vol. 64, p. 125.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited