OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14618–14626

High-brightness single photon source from a quantum dot in a directional-emission nanocavity

Mitsuru Toishi, Dirk Englund, Andrei Faraon, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14618-14626 (2009)
http://dx.doi.org/10.1364/OE.17.014618


View Full Text Article

Enhanced HTML    Acrobat PDF (756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze a single photon source consisting of an InAs quantum dot coupled to a directional-emission photonic crystal (PC) cavity implemented in GaAs. On resonance, the dot’s lifetime is reduced by more than 10 times, to 45ps. Compared to the standard three-hole defect cavity, the perturbed PC cavity design improves the collection efficiency into an objective lens (NA = 0.75) by factor 4.5, and improves the coupling efficiency of the collected light into a single mode fiber by factor 1.9. The emission frequency is determined by the cavity mode, which is antibunched to g(2) (0) = 0.05. The cavity design also enables efficient coupling to a higher-order cavity mode for local optical excitation of cavity-coupled quantum dots.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources
(250.5300) Optoelectronics : Photonic integrated circuits
(260.5740) Physical optics : Resonance

ToC Category:
Integrated Optics

History
Original Manuscript: March 31, 2009
Revised Manuscript: May 26, 2009
Manuscript Accepted: June 29, 2009
Published: August 4, 2009

Citation
Mitsuru Toishi, Dirk Englund, Andrei Faraon, and Jelena Vučković, "High-brightness single photon source from a quantum dot in a directional-emission nanocavity," Opt. Express 17, 14618-14626 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef] [PubMed]
  2. S. Takeuchi, “Experimental demonstration of a three-qubit quantum computation algorithm using a single photon and linear optics,” Phys. Rev. A 62(3), 032301 (2000). [CrossRef]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  4. A. Kiraz, M. Atatüre, and A. Imamoğlu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69(3), 032305 (2004). [CrossRef]
  5. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  6. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  7. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef] [PubMed]
  8. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaı̂tre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87(16), 163107 (2005). [CrossRef]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  10. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007). [CrossRef] [PubMed]
  11. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled Phase Shifts with a Single Quantum Dot,” Science 320(5877), 769–772 (2008). [CrossRef] [PubMed]
  12. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  13. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  14. D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Lase. and Photon. Rev. 2(4), 264–274 (2008). [CrossRef]
  15. T. Tanaka, M. Tymczenko, T. Asano, and S. Noda, “Fabrication of Two-Dimensional Photonic Crystal Slab Point-Defect Cavity Employing Local Three-Dimensional Structures,” Jpn. J. Appl. Phys. 45(No. 8A), 6096–6102 (2006). [CrossRef]
  16. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “ Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73(23), 235117 (2006). [CrossRef]
  17. D. Englund, M. Toishi, and J. Vučković, Opt. Express (To be published). [PubMed]
  18. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008). [CrossRef]
  19. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  20. L. B. Jeunhomme, “Single-Mode Fiber Optics” (Marcel Dekker, New York, 1990).
  21. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75(19), 195313 (2007). [CrossRef]
  22. D. Englund and J. Vucković, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–3483 (2006). [CrossRef] [PubMed]
  23. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007). [CrossRef]
  24. M. Nomura, S. Iwamoto, M. Nishioka, S. Ishida, and Y. Arakawa, “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation,” Appl. Phys. Lett. 89(16), 161111 (2006). [CrossRef]
  25. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]
  26. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaı̂tre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87(16), 163107 (2005). [CrossRef]
  27. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  28. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007). [CrossRef] [PubMed]
  29. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008). [CrossRef]
  30. A. Auffeves, J. M. Gerard, and J. P. Poizat, quant-phys/0808.0820 (2008)
  31. S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express 17(5), 3322–3330 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited