OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14649–14664

Statistical Interpolation Method of Turbulent Phase Screen

Han-Ling Wu, Hai-Xing Yan, Xin-Yang Li, and Shu-Shan Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14649-14664 (2009)
http://dx.doi.org/10.1364/OE.17.014649


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A relative displacement between the grid points of optical fields and those of phase screens may occur in the simulation of light propagation through the turbulent atmosphere. A statistical interpolator is proposed to solve this problem in this paper. It is evaluated by the phase structure function and numerical experiments of light propagation through atmospheric turbulence with/without adaptive optics (AO) and it is also compared with the well-known linear interpolator under the same condition. Results of the phase structure function show that the statistical interpolator is more accurate in comparison with the linear one, especially in the high frequency region. More importantly, the long-exposure results of light propagation through the turbulent atmosphere with/without AO also show that the statistical interpolator is more accurate and reliable than the linear one.

© 2009 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 19, 2009
Revised Manuscript: July 9, 2009
Manuscript Accepted: July 17, 2009
Published: August 4, 2009

Citation
Han-Ling Wu, Hai-Xing Yan, Xin-Yang Li, and Shu-Shan Li, "Statistical interpolation method of turbulent phase screen," Opt. Express 17, 14649-14664 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976). [CrossRef]
  2. H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, “Numerical simulation of an adaptive optics system with laser propagation in the atmosphere,” Appl. Opt. 39(18), 3023–3031 (2000). [CrossRef]
  3. L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006). [CrossRef]
  4. F. Dios, J. Recolons, A. Rodríguez, and O. Batet, “Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens,” Opt. Express 16(3), 2206–2220 (2008). [CrossRef] [PubMed]
  5. H.-X Yan, Han-Ling Wu, Shu-Shan Li and She Chen, “Cone effect in astronomical adaptive optics system investigated by a pure numerical simulation,” Proc. SPIE 5903, 5903OU1–12 (2005).
  6. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994). [CrossRef]
  7. V. Sriram and D. Kearney, “An ultra fast Kolmogorov phase screen generator suitable for parallel implementation,” Opt. Express 15(21), 13709–13714 (2007). [CrossRef] [PubMed]
  8. A. Beghi, A. Cenedese, and A. Masiero, “Stochastic realization approach to the efficient simulation of phase screens,” J. Opt. Soc. Am. A 25(2), 515–525 (2008). [CrossRef]
  9. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35(9), 1561–1565 (1996). [CrossRef] [PubMed]
  10. H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002). [CrossRef]
  11. B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997). [CrossRef]
  12. G. Sedmak, “Performance analysis of and compensation for aspect-ratio effects of fast-fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37(21), 4605–4613 (1998). [CrossRef]
  13. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadamer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34(20), 4037–4051 (1995). [CrossRef] [PubMed]
  14. H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006). [CrossRef]
  15. F. Assémat, R. W. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14(3), 988–999 (2006). [CrossRef] [PubMed]
  16. D. L. Fried and T. Clark, “Extruding Kolmogorov-type phase screen ribbons,” J. Opt. Soc. Am. A 25(2), 463–468 (2008). [CrossRef]
  17. C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990). [CrossRef]
  18. B. Formwalt and S. Cain, “Optimized phase screen modeling for optical turbulence,” Appl. Opt. 45(22), 5657–5668 (2006). [CrossRef] [PubMed]
  19. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992). [CrossRef]
  20. C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a kolmogorov phase screen,” Appl. Opt. 38(11), 2161–2170 (1999). [CrossRef]
  21. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, Washington, 2005).
  22. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, Boston, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited