OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14839–14850

Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications

Rajind Mendis and Daniel M. Mittleman  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 14839-14850 (2009)
http://dx.doi.org/10.1364/OE.17.014839


View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE1 mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE1 mode’s inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE1 mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE1 mode.

© 2009 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(320.5390) Ultrafast optics : Picosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 22, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: July 31, 2009
Published: August 6, 2009

Citation
Rajind Mendis and Daniel M. Mittleman, "Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications," Opt. Express 17, 14839-14850 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  2. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001). [CrossRef]
  3. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29(15), 1751–1753 (2004). [CrossRef] [PubMed]
  4. S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84(5), 654–656 (2004). [CrossRef]
  5. R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett. 42(1), 19–21 (2006). [CrossRef]
  6. J. S. Melinger, N. Laman, S. S. Harsha, and D. Grischkowsky, “Line narrowing of terahertz vibrational modes for organic thin polycrystalline films within a parallel plate waveguide,” Appl. Phys. Lett. 89(25), 252221 (2006). [CrossRef]
  7. J. S. Melinger, N. Laman, S. S. Harsha, S. Cheng, and D. Grischkowsky, “High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films,” J. Phys. Chem. A 111(43), 10977–10987 (2007). [CrossRef] [PubMed]
  8. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008). [CrossRef]
  9. J. Zhang and D. Grischkowsky, “Waveguide THz time-domain spectroscopy of nm water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [CrossRef] [PubMed]
  10. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006). [CrossRef]
  11. M. M. Awad and R. A. Cheville, “Transmission terahertz waveguide-based imaging below the diffraction limit,” Appl. Phys. Lett. 86(22), 221107 (2005). [CrossRef]
  12. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008). [CrossRef] [PubMed]
  13. Z. Jian, J. Pearce, and D. M. Mittleman, “Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy,” Opt. Lett. 29(17), 2067–2069 (2004). [CrossRef] [PubMed]
  14. Y. Zhao and D. Grischkowsky, “2-D terahertz metallic photonic crystals in parallel-plate waveguides,” IEEE Trans. Microw. Theory Tech. 55(4), 656–663 (2007). [CrossRef]
  15. A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Appl. Phys. Lett. 90(9), 091105 (2007). [CrossRef]
  16. T. Prasad, V. L. Colvin, Z. Jian, and D. M. Mittleman, “Superprism effect in a metal-clad terahertz photonic crystal slab,” Opt. Lett. 32(6), 683–685 (2007). [CrossRef] [PubMed]
  17. S. S. Harsha, N. Laman, and D. Grischkowsky, “High-Q terahertz Bragg resonances within a metal parallel plate waveguide,” Appl. Phys. Lett. 94(9), 091118 (2009). [CrossRef]
  18. N. Marcuvitz, Waveguide Handbook (Peregrinus, 1993).
  19. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  20. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009). [CrossRef]
  21. R. Mendis, “THz transmission characteristics of dielectric-filled parallel-plate waveguides,” J. Appl. Phys. 101(8), 083115 (2007). [CrossRef]
  22. R. Mendis and D. M. Mittleman, “Whispering-gallery-mode THz-pulse propagation on a single curved metallic plate,” in Conference on Lasers and Electro-Optics 2009, paper CThQ1.
  23. R. Mendis and D. M. Mittleman, “A beam-scanning THz prism with effective refractive index less than unity,” presented at the International Workshop on Optical Terahertz Science and Technology, California, USA, 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited