OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 14902–14908

Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime

Seong-Min Ma, Hua Xu, and Byoung Seung Ham  »View Author Affiliations

Optics Express, Vol. 17, Issue 17, pp. 14902-14908 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetically-induced transparency (EIT) is observed and analyzed for the group velocity of a femtosecond light pulse interacting with GaAs/AlGaAs multiple quantum wells (MQWs) in a transient regime. The calculated slowdown factor of the group velocity inside the medium due to the dynamic refractive index change is ~2.10 × 103. We discuss the potential of EIT-induced slow light in GaAs/AlGaAs MQWs for ultrafast (~210 GHz) all-optical information processing such as photon routing.

© 2009 OSA

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Quantum Optics

Original Manuscript: July 8, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 4, 2009
Published: August 6, 2009

Seong-Min Ma, Hua Xu, and Byoung Seung Ham, "Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime," Opt. Express 17, 14902-14908 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005). [CrossRef]
  2. B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16(8), 5350–5361 (2008). [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005). [CrossRef] [PubMed]
  7. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  8. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  9. M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002). [CrossRef] [PubMed]
  10. M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004). [CrossRef]
  11. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003). [CrossRef] [PubMed]
  12. R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998). [CrossRef]
  13. R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007). [CrossRef]
  14. K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993). [CrossRef]
  15. R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992). [CrossRef]
  16. N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2003).
  18. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1989).
  19. H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998). [CrossRef]
  20. T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991). [CrossRef] [PubMed]
  21. B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited