OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15008–15022

Superresolution imaging method using phase-shifting digital lensless Fourier holography

Luis Granero, Vicente Micó, Zeev Zalevsky, and Javier García  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15008-15022 (2009)
http://dx.doi.org/10.1364/OE.17.015008


View Full Text Article

Enhanced HTML    Acrobat PDF (1755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method which is useful for obtaining superresolved imaging in a digital lensless Fourier holographic configuration is presented. By placing a diffraction grating between the input object and the CCD recording device, additional high-order spatial-frequency content of the object spectrum is directed towards the CCD. Unlike other similar methods, the recovery of the different band pass images is performed by inserting a reference beam in on-axis mode and using phase-shifting method. This strategy provides advantages concerning the usage of the whole frequency plane as imaging plane. Thus, the method is no longer limited by the zero order term and the twin image. Finally, the whole process results in a synthetic aperture generation that expands up the system cutoff frequency and yields a superresolution effect. Experimental results validate our concepts for a resolution improvement factor of 3.

© 2009 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: May 18, 2009
Revised Manuscript: July 16, 2009
Manuscript Accepted: July 24, 2009
Published: August 10, 2009

Citation
Luis Granero, Vicente Micó, Zeev Zalevsky, and Javier García, "Superresolution imaging method using phase-shifting digital lensless Fourier holography," Opt. Express 17, 15008-15022 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15008


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Bachl and A. W. Lukosz, "Experiments on superresolution imaging of a reduced object field," J. Opt. Soc. Am. 57, 163-169 (1967).
  2. E. Abbe, "Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,"Archiv. Microskopische Anat. 9, 413-468 (1873).
  3. W. Lukosz, "Optical systems with resolving powers exceeding the classical limit," J. Opt. Soc. Am. 56, 1463-1472 (1966).
  4. W. Lukosz, "Optical systems with resolving powers exceeding the classical limit II," J. Opt. Soc. Am. 57, 932-941 (1967).
  5. A. Shemer, D. Mendlovic, Z. Zalevsky, J. García and P. García-Martínez, "Superresolving Optical system with time multiplexing and computer decoding," Appl. Opt. 38, 7245-7251 (1999).
  6. A. I. Kartashev, "Optical systems with enhanced resolving power," Optics Spectrosc. 9, 204-206 (1960).
  7. J. D. Armitage, A. W. Lohmann, and D. P. Parish, "Superresolution image forming systems for objects with restricted lambda dependence," Jpn. J. Appl. Phys. 4, 273-275 (1965).
  8. M. A. Grim and A. W. Lohmann, "Superresolution image for 1-D objects," J. Opt. Soc. Am. 56, 1151-1156 (1966).
  9. H. Bartelt and A. W. Lohmann, "Optical processing of 1-D signals," Opt. Commun. 42, 87-91 (1982).
  10. A. W. Lohmann and D. P. Paris, "Superresolution for nonbirrefringent objects," Appl. Opt. 3, 1037-1043 (1964).
  11. A. Zlotnik, Z. Zalevsky, and E. Marom, "Superresolution with nonorthogonal polarization coding," Appl. Opt. 44, 3705-3715 (2005). [PubMed]
  12. Z. Zalevsky, P. García-Martínez, and J. García, "Superresolution using gray level coding," Opt. Express 14, 5178-5182 (2006). [PubMed]
  13. Z. Zalevsky, D. Mendlovic and A. W. Lohmann, "Superresolution optical system for objects with finite size," Opt. Commun. 163, 79-85 (1999).
  14. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Konforti and I. Kiryuschev, "Superresolution optical system using three fixed generalized gratings: experimental results," J. Opt. Soc. Am. A 18, 514-520 (2001).
  15. J. García, V. Micó, D. Cojoc, and Z. Zalevsky, "Full field of view super-resolution imaging based on two static gratings and white light illumination," Appl. Opt. 47, 3080-3087 (2008). [PubMed]
  16. Ch. J. Schwarz, Y. Kuznetsova and S. R. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003). [PubMed]
  17. V. Mico, Z. Zalevsky, and J. García, "Superresolution optical system by common-path interferometry," Opt. Express 14, 5168-5177 (2006). [PubMed]
  18. V. Mico, Z. Zalevsky, P. García-Martínez and J. García, "Synthetic aperture superresolution using multiple off-axis holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006).
  19. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007). [PubMed]
  20. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck "Imaging interferometric microscopy - approaching the linear system limits of optical resolution", Opt. Express 15, 6651-6663 (2007). [PubMed]
  21. V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007).
  22. V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008).
  23. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, "Superresolution digital holographic microscopy for three-dimensional samples," Opt. Express 16, 19260-19270 (2008).
  24. F. Le Clerc, M. Gross and L. Collot, "Synthetic aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001).
  25. J. H. Massig, "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
  26. R. Binet, J. Colineau, and J-C. Lehureau, "Short-range synthetic aperture imaging at 633 nm by digital holography", Appl. Opt. 41, 4775-4782 (2002). [PubMed]
  27. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, "High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning," Appl. Opt. 47, 5654-5658 (2008). [PubMed]
  28. Ch. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
  29. C. Yuan, H. Zhai, and H. Liu, "Angular multiplexing in pulsed digital holography for aperture synthesis," Opt. Lett. 33, 2356-2358 (2008). [PubMed]
  30. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, "Super-resolution in digital holography by two-dimensional dynamic phase grating," Opt. Express 16, 17107-17118 (2008). [PubMed]
  31. I. Yamaguchi and T. Zhong, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [PubMed]
  32. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6185 (2001).
  33. J. Goodman, Introduction to Fourier Optics 2nd ed., (McGraw-Hill, New York, 1996).
  34. T. Kreis, Handbook of Holographic Interferometry, (Wiley-VCH, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited