OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15087–15103

On the application of a monolithic array for detecting intensity-correlated photons emitted by different source types

D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15087-15103 (2009)
http://dx.doi.org/10.1364/OE.17.015087


View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is not widely appreciated that many subtleties are involved in the accurate measurement of intensity-correlated photons; even for the original experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4×4 array of single-photon avalanche diodes (SPADs), together with an off-chip algorithm for processing streaming data, we investigate the difficulties of measuring second-order photon correlations g(2)(x′, t′,x, t) in a wide variety of light fields that exhibit dramatically different correlation statistics: a multimode He-Ne laser, an incoherent intensity-modulated lamp-light source and a thermal light source. Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in any observation interval, with photon fluxes limited by detector saturation, in such a way that a correctly normalized g(2) function is guaranteed. The impact of detector background correlations between SPAD pixels and afterpulsing effects on second-order coherence measurements is discussed. These results demonstrate that our monolithic SPAD array enables access to effects that are otherwise impossible to measure with stand-alone detectors.

© 2009 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.1240) Detectors : Arrays
(040.5570) Detectors : Quantum detectors
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

History
Original Manuscript: June 29, 2009
Revised Manuscript: August 3, 2009
Manuscript Accepted: August 4, 2009
Published: August 11, 2009

Citation
D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, "On the application of a monolithic array for detecting intensity-correlated photons emitted by different source types," Opt. Express 17, 15087-15103 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15087


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. A. Lundeberg, G. P. Lousberg, D. L. Boiko, and E. Kapon, "Spatial coherence measurements in arrays of coupled vertical cavity surface emitting lasers," Appl. Phys. Lett. 90, 021103-3 (2007). [CrossRef]
  2. D. W. Snoke, "When should we say we have observed Bose condensation of excitons?" Phys. Stat. Sol.(b) 238, 389-396 (2003). [CrossRef]
  3. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, "Condensation of Semiconductor Microcavity Exciton Polaritons," Science 298, 199-202 (2002). [CrossRef] [PubMed]
  4. H. Deng, D. Press, S. G¨otzinger, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, "Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium," Phys. Rev. Lett. 97, 146402-4 (2006). [CrossRef] [PubMed]
  5. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma’nska, R. Andr’e, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, "Bose-Einstein condensation of exciton polaritons," Nature 443, 409-414 (2006). [CrossRef] [PubMed]
  6. S. Christopoulos, G. Baldassarri Hoger von Hogersthal, A. J. D. Grundy, P. G. Lagoudakis, A.V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt’e, E. Feltin, J.-F. Carlin, and N. Grandjean, "Room-Temperature Polariton Lasing in Semiconductor Microcavities," Phys. Rev. Lett. 98, 126405-4 (2007). [CrossRef]
  7. D. Bajoni, P. Senellart, A. Lema?tre, and J. Bloch, "Photon lasing in GaAs microcavity: Similarities with a polariton condensate," Phys. Rev. B 76, 201305(R)-4 (2007). [CrossRef]
  8. J. Bloch, D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, and A. Lema?tre,"Polariton quantum degeneracy in GaAs microcavities," presented at the 2008 Latsis Symposium at EPFL on Bose Einstein Condensation in dilute atomic gases and in condensed matter, Lausanne, Switzerland, 28-30 Januarry 2008.
  9. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein Condensation of Microcavity Polaritons in a Trap," Science 316, 1007-1010 (2007). [CrossRef] [PubMed]
  10. D. L. Boiko, "Towards r-space Bose-Einstein condensation of photonic crystal exciton polaritons," in Proceedings of the Progress in Electromagnetics Research Symposium PIERS 2008, (Cambridge MA, USA, July 2-6, 2008), pp 659-665 (2008); idem, PIERS Online 4, 831-837 (2008).
  11. R. J. Glauber, "Coherent and incoherent states of the radiation field," Phys. Rev. 131, 2766-2788 (1963). [CrossRef]
  12. G. Scarcelli, A. Valencia, and Y. Shih, "Two-photon interference with thermal light," Europhys. Lett.,  68, 618-624 (2004). [CrossRef]
  13. R. Hanbury Brown, and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature 177, 27-29 (1956). [CrossRef]
  14. A. Adam, L. Janossy, and R. Varga, "Coincidences between photons contained in coherent light rays," Acta Physica Hungarica 4, 301-315 (1955).
  15. E. Brannen, and H. I. S. Ferguson, "The question of correlation between photons in coherent light beams," Nature 178, 481-482 (1956). [CrossRef]
  16. R. H. Brown, and R. Q. Twiss, "The question of corelation between photons in coherent light rays," Nature 178, 1447-1448 (1956). [CrossRef]
  17. E. M. Purcell, "The question of corelation between photons in coherent light rays," Nature 178, 1449-1450 (1956). [CrossRef]
  18. D. L. Boiko, N. J. Gunther, N. Brauer, M. Sergio, C. Niclass, G. B. Beretta, and E. Charbon, "A quantum imager for intensity correlated photons," New J. Phys. 11, 013001-7 (2009). [CrossRef]
  19. R. Hanbury Brown, and R. Q. Twiss, "A test of a new type of stellar interferometer on Sirius," Nature 178, 1046-1048 (1956). [CrossRef]
  20. C. Niclass, M. Sergio, and E. Charbon, "A Single Photon Avalanche Diode Array Fabricated in 0.35 um CMOS and based on an Event-Driven Readout for TCSPC Experiments" in Proc. SPIE Opt. East (Boston) vol 6372 (Bellingham, WA, SPIE Optical Engineering Press, 2006) p 63720S-12.
  21. R. J. Glauber, "The Quantum Theory of Optical Coherence," Phys. Rev. 130, 2529-2539 (1963). [CrossRef]
  22. P. L. Kelley, and W. H. Kleiner, "Theory of Electromagnetic Field Measurement and Photoelectron Counting," Phys. Rev. 136, A316-A334 (1964). [CrossRef]
  23. J. Enderlein, and I. Gregor, "Using fluorescence lifetime for discriminating detector afterpulsing in fluorescencecorrelation spectroscopy," Rev. Sci. Instrum. 76, 033102-5 (2005). [CrossRef]
  24. E. Overbeck, and C. Sinn, "Silicon avalanche photodiodes as detectors for photon correlation experiments," Rev. Sci. Instrum. 69, 3515-3523 (1998). [CrossRef]
  25. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, "Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes," IEEE J. Solid-State Circuits 40, 1847-1854 (2005). [CrossRef]
  26. R. J. Glauber, "Nobel Lecture: One hundred years of light quanta," Ann. Phys. (Leipzig) 16, 6-24 (2007). [CrossRef]
  27. J. Zhang, Q. Li, W. Pan, and Y. Chen, "Ring-Shaped Field Pattern: The Fundamental Mode of a Multimode Optical Fiber," Fiber Integ. Opt. 20, 403-410 (2001). [CrossRef]
  28. C. W. Oh, S. Moon, SuhasP. Veetil, and D. Y. Kim, "An angular offset launching technique for bandwidth enhancement in multimode fiber links," Micro. Opt. Technol. Lett. 50, 165-168 (2007). [CrossRef]
  29. E. I. Chaikina, S. Stepanov, A. G. Navarrete, E. R. M’endez, and T. A. Leskova, "Formation of angular power profile via ballistic light transport in multimode optical fibers with corrugated surfaces," Phys. Rev. B 71, 085419-9 (2005). [CrossRef]
  30. A. A. Grutter, H. P. Weber, and R. Dandliker, "Imperfectly Mode-Locked Laser Emission and Its Effects on Nonlinear Optics," Phys. Rev. 185, 629-643 (1969). [CrossRef]
  31. D. B. Scarl, "Measurement Of Photon Time-Of-Arrival Distribution In Partially Coherent Light," Phys. Rev. Lett. 17, 663-666 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited