OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15308–15317

Optical transmission and laser structuring of silicon membranes

Saulius Juodkazis, Yasufumi Nishi, Hiroaki Misawa, Vygantas Mizeikis, Olivier Schecker, Reimar Waitz, Paul Leiderer, and Elke Scheer  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15308-15317 (2009)
http://dx.doi.org/10.1364/OE.17.015308


View Full Text Article

Enhanced HTML    Acrobat PDF (4496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical linear and nonlinear properties of ~340-nm-thick Si membranes were investigated. The investigation included both experiments in which the reflection and transmission from the membranes were measured, and finite differences time domain simulations. The linear optical transmission of the Si membranes can be controlled by changing the thickness of a thermally grown oxide on the membrane. Illumination of the membranes with high levels of irradiation leads to optical modifications that are consistent with the formation of amorphous silicon and dielectric breakdown. When irradiated under conditions where dielectric breakdown occurs, the membranes can be ablated in a well-controlled manner. Laser micro-structuring of the membranes by ablation was carried out to make micrometer-sized holes by focused fs-pulses. Ns-pulses were also used to fabricate arrays of holes by proximity-ablation of a closely-packed pattern of colloidal particles.

© 2009 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(350.3850) Other areas of optics : Materials processing
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 21, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: August 13, 2009
Published: August 14, 2009

Citation
Saulius Juodkazis, Yasufumi Nishi, Hiroaki Misawa, Vygantas Mizeikis, Olivier Schecker, Reimar Waitz, Paul Leiderer, and Elke Scheer, "Optical transmission and laser structuring of silicon membranes," Opt. Express 17, 15308-15317 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, "Elastically relaxed free-standing strained-silicon nanomembranes," Nature Materials 5, 388-393 (2006). [CrossRef] [PubMed]
  2. W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Biaxially stretchable "wavy" silicon nanomembranes," NanoLetters 7, 1655-1663 (2007). [CrossRef]
  3. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, "Charge- and size-based separation of macromolecules using ultrathin silicon membranes," Nature 445, 749-753 (2007). [CrossRef] [PubMed]
  4. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, "Fabrication of Ultrathin Single-Crystal Diamond Membranes," Adv. Mat. 20, 4793-4798 (2008). [CrossRef]
  5. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, "Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs," Opt. Express 17, 6465-6475 (2009). [CrossRef] [PubMed]
  6. D. C. Guhr, D. Rettinger, J. Boneberg, A. Erbe, P. Leiderer, and E. Scheer, "Influence of laser light on electronic transport through atomic-size contacts," Phys. Rev. Lett. 99, 086801/1-4 (2007). [CrossRef]
  7. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane," Nature 452, 72 - 75 (2008). [CrossRef] [PubMed]
  8. N. Kang, A. Erbe, and E. Scheer, "Electrical characterization of DNA in mechanically controlled breakjunctions," New J. Phys. 10, 023030/1-9 (2008). [CrossRef]
  9. R. Waitz, O. Schecker, and E. Scheer, "Nanofabricated adjustable multicontact devices on membranes," Rev. Sci. Instrum. 79, 093901/1 -5 (2008). [CrossRef]
  10. J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips", Nature 442, 403 - 411 (2006). [CrossRef] [PubMed]
  11. J. Butschke, A. Ehrmann, E. Haugeneder, M. Irmscher, R. K¨asmaier, K. Kragler, F. Letzkus, H. L¨oschner, J. Mathuni, I. W. Rangelow, C. Reuter, F. Shi, and R. Springer, "PN and SOI wafer flow process for stencil mask fabrication," Proc. SPIE 3665, 20 - 29 (1999). [CrossRef]
  12. O. Schecker, "Nano-contacts for ElectroMagnetic NanoSystems (NEMS)," Ph.D. thesis, Institute of Microelectronics, Electromagnetics, and Photonics, Grenoble, France and University of Konstanz, Konstanz, Germany (2008).
  13. O. Toader, T. Y. M. Chan, and S. John, "Diamond photonic band gap synthesis by umbrella holographic lithography," Appl. Phys. Lett. 89, 101117/1-3 (2006). [CrossRef]
  14. B. Deal and A. S. Grove, "General Relationship for the Thermal Oxidation of Silicon," J. Appl. Phys. 36, 3770 - 3778 (1965); online calculator at http://ee.byu.edu/cleanroom/OxideThickCalc.phtml. [CrossRef]
  15. S. A. Vitale and B. A. Smith, "Reduction of silicon recess caused by plasma oxidation during high-density plasma polysilicon gate etching," J. Vac. Sci. Technol. B 21, 2205-2211 (2003). [CrossRef]
  16. Y. Yokota, K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical characterization of plasmonic metallic nanostructures fabricated by high-resolution lithography," J. Nanophoton. 1, 594 (2008).
  17. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, "Nanoparticle plasmonassisted two-photon photolymerization induced by incoherent excitation source," J. Am. Chem. Soc. 130, 6928- 6929 (2008). [CrossRef] [PubMed]
  18. H. Morikami, H. Yoneda, K.-I. Ueda, and R. M. More, "Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments," Phys. Rev. E 70, 035401R/1-3 (2004). [CrossRef]
  19. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, "Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation," Phys. Rev. B 73, 214101 (2006). [CrossRef]
  20. Y. Izawa, Y. Izawa, Y. Setsuhara, M. Hashida, M. Fujita, R. Sasaki, H. Nagai, and M. Yoshida, "Ultrathin amorphous Si layer formation by femtosecond laser pulse irradiation," Appl. Phys. Lett. 90, 044107/1-2 (2007). [CrossRef]
  21. M. J. Birnbaum, "Semiconductor surface damage produced by ruby lasers," J. Appl. Phys. 36, 3688 - 3689 (1965). [CrossRef]
  22. D. Bauerle, Laser processing and chemistry (Springer, Berlin, 2000).
  23. H.-J. M¨unzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, "Local field enhancement effects for nanostructuring of surfaces," J. Microscopy 202, 129-135 (2001). [CrossRef]
  24. H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, "Suppression of ripples on Ni surface via a polarization grating," Opt. Express 17, 4388-4396 (2009). [CrossRef] [PubMed]
  25. K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, "Three-dimensional microchannels in polymers: one step fabrication," Appl. Phys. A 77, 371-373 (2003). [CrossRef]
  26. E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, "Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses," Appl. Phys. Lett. 82, 2901-2903 (2003). [CrossRef]
  27. F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J.-R. Huntzinger, "Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses," Phys. Rev. B 79, 201307R/1 - 4 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited