OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15541–15549

Grating based plasmonic band gap cavities

S. Seckin Senlik, Askin Kocabas, and Atilla Aydinli  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 15541-15549 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moiré surfaces. We show that for biharmonic band gap cavities, the radiation loss can be suppressed by removing the additional grating component in the cavity region. Due to the gradual change of the surface profile in the cavity region, Moiré type surfaces support cavity modes with higher quality factors. Experimentally, we demonstrate the existence of plasmonic cavities based on uniform gratings. Effective index perturbation and cavity geometries are obtained by additional dielectric loading. Quality factor of 85 is obtained from the measured band structure of the cavity.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.2770) Other areas of optics : Gratings
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optics at Surfaces

Original Manuscript: July 13, 2009
Revised Manuscript: August 9, 2009
Manuscript Accepted: August 10, 2009
Published: August 18, 2009

S. Seckin Senlik, Askin Kocabas, and Atilla Aydinli, "Grating based plasmonic band gap cavities," Opt. Express 17, 15541-15549 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  3. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007). [CrossRef]
  4. Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009). [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]
  6. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008). [CrossRef] [PubMed]
  7. M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15(7), 4238–4246 (2007). [CrossRef] [PubMed]
  8. Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007). [CrossRef]
  9. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  10. A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008). [CrossRef]
  11. A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009). [CrossRef] [PubMed]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996). [CrossRef]
  13. A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14(22), 10228–10232 (2006). [CrossRef] [PubMed]
  14. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986). [CrossRef]
  15. FDTD Solutions, Lumerical Inc. Suite 201,1290 Homer St.Vancouver, B.C,Canada V6B 2Y5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited