OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 15975–15982

Photonic crystal nanocavity laser with a single quantum dot gain

Masahiro Nomura, Naoto Kumagai, Satoshi Iwamoto, Yasutomo Ota, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 15975-15982 (2009)
http://dx.doi.org/10.1364/OE.17.015975


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a photonic crystal nanocavity laser essentially driven by a self-assembled InAs/GaAs single quantum dot gain. The investigated nanocavities contain only 0.4 quantum dots on an average; an ultra-low density quantum dot sample (1.5 x 108 cm−2) is used so that a single quantum dot can be isolated from the surrounding quantum dots. Laser oscillation begins at a pump power of 42 nW under resonant condition, while the far-detuning conditions require ~145 nW for lasing. This spectral detuning dependence of laser threshold indicates substantial contribution of the single quantum dot to the total gain. Moreover, photon correlation measurements show a distinct transition from anti-bunching to Poissonian via bunching with the increase of the excitation power, which is also an evidence of laser oscillation using the single quantum dot gain.

© 2009 OSA

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(050.5298) Diffraction and gratings : Photonic crystals
(130.3990) Integrated optics : Micro-optical devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Photonic Crystals

History
Original Manuscript: July 31, 2009
Revised Manuscript: August 18, 2009
Manuscript Accepted: August 18, 2009
Published: August 25, 2009

Citation
Masahiro Nomura, Naoto Kumagai, Satoshi Iwamoto, Yasutomo Ota, and Yasuhiko Arakawa, "Photonic crystal nanocavity laser with a single quantum dot gain," Opt. Express 17, 15975-15982 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15975


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  5. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005). [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  7. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  8. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98(11), 117401 (2007). [CrossRef] [PubMed]
  9. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16(7), 4848–4857 (2008). [CrossRef] [PubMed]
  10. J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35(8), 1168–1175 (1999). [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  12. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]
  14. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  15. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B 75(19), 195313 (2007). [CrossRef]
  16. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98(4), 043906 (2007). [CrossRef] [PubMed]
  17. T. Tawara, H. Kamada, Y.-H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008). [CrossRef] [PubMed]
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton Univ. Press, Princeton, NJ, 1995).
  19. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “A. Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006). [CrossRef]
  20. N. Kumagai, S. Ohkouchi, S. Nakagawa, M. Nomura, Y. Ota, M. Shirane, Y. Igarashi, S. Yorozu, S. Iwamoto, and Y. Arakawa, “Suppression of indefinite peaks in InAs/GaAs quantum dot spectrum by low temperature Indium-flush method,” Mo-mP22, 14th International Conference on Modulated Semiconductor Structures, Kobe, Japan, July (2009).
  21. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  22. M. Kaniber, A. Laucht, A. Neumann, J. M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008). [CrossRef]
  23. M. Yamaguchi, T. Asano, and S. Noda, “Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics,” Opt. Express 16(22), 18067–18081 (2008). [CrossRef] [PubMed]
  24. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177(4497), 27–29 (1956). [CrossRef]
  25. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).
  26. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef] [PubMed]
  27. J. A. Armstrong and A. W. Smith, “Intensity fluctuation in a GaAa laser,” Phys. Rev. Lett. 14(3), 68–70 (1965). [CrossRef]
  28. P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A 50(5), 4318–4329 (1994). [CrossRef] [PubMed]
  29. R. Jin, D. Boggavarapu, M. Sargent, P. Meystre, H. M. Gibbs, and G. Khitrova, “Photon-number correlations near the threshold of microcavity lasers in the weak-coupling regime,” Phys. Rev. A 49(5), 4038–4042 (1994). [CrossRef] [PubMed]
  30. H. Altug and J. Vucković, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819–8828 (2005). [CrossRef] [PubMed]
  31. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum dot-nanocavity system,” arXiv:0905.3063v2 (2009).
  32. M. Nomura, S. Iwamoto, T. Yang, S. Ishida, and Y. Arakawa, “Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation,” Appl. Phys. Lett. 89(24), 241124 (2006). [CrossRef]
  33. Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, “Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity,” Appl. Phys. Lett. 93(18), 183114 (2008). [CrossRef]
  34. M. Kaniber, A. Neumann, A. Laucht, M. F. Huck, M. Bichler, M.-C. Amann, and J. J. Finley, “Efficient and selective cavity-resonant excitation for single photon generation,” N. J. Phys. 11(1), 013031 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited