OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16000–16016

Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT)

Qian Li, Maristela L. Onozato, Peter M. Andrews, Chao-Wei Chen, Andrew Paek, Renee Naphas, Shuai Yuan, James Jiang, Alex Cable, and Yu Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 16000-16016 (2009)
http://dx.doi.org/10.1364/OE.17.016000


View Full Text Article

Enhanced HTML    Acrobat PDF (2079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) is a rapidly emerging imaging modality that can non-invasively provide cross-sectional, high-resolution images of tissue morphology in situ and in real-time. We previously demonstrated that OCT is capable of visualizing characteristic kidney anatomic structures, including blood vessels, uriniferous tubules, glomeruli, and renal capsules on a Munich–Wistar rat model. Because the viability of a donor kidney is closely correlated with its tubular morphology, and a large amount of image datasets are expected when using OCT to scan the entire kidney to provide a global assessment of its viability, it is necessary to develop automatic image analysis methods to quantify the spatially-resolved morphometric parameters such as tubular diameter to provide potential diagnostic information. In this study, we imaged the human kidney in vitro and quantified the diameters of hollow structures such as blood vessels and uriniferous tubules automatically. The microstructures were first segmented from cross-sectional OCT images. Then the spatially-isolated region-of-interest (ROI) was automatically selected to quantify its dimension. This method enables the automatic selection and quantification of spatially-resolved morphometric parameters. The quantification accuracy was validated, and measured features are in agreement with known kidney morphology. This work can enable studies to determine the clinical utility of OCT for kidney imaging, as well as studies to evaluate kidney morphology as a biomarker for assessing kidney’s viability prior to transplantation.

© 2009 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 10, 2009
Revised Manuscript: August 15, 2009
Manuscript Accepted: August 22, 2009
Published: August 25, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Qian Li, Maristela L. Onozato, Peter M. Andrews, Chao-Wei Chen, Andrew Paek, Renee Naphas, Shuai Yuan, James Jiang, Alex Cable, and Yu Chen, "Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT)," Opt. Express 17, 16000-16016 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol. 113, 325-332 (1995). [CrossRef] [PubMed]
  3. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003). [CrossRef] [PubMed]
  4. Q1. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmol. 112, 1734-1746 (2005). [CrossRef]
  5. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, "High resolution in vivo intra-arterial imaging with optical coherence tomography," Heart 82, 128-133 (1999). [PubMed]
  6. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound," J. Am. College Cardiology 39, 604-609 (2002). [CrossRef]
  7. B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointestinal Endoscopy 51, 467-474 (2000). [CrossRef] [PubMed]
  8. M. V. Sivak, Jr., K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointestinal Endoscopy 51, 474-479 (2000). [CrossRef] [PubMed]
  9. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus," Endoscopy 32, 921-930 (2000). [CrossRef]
  10. Y. Chen, A. D. Aguirre, P. L. Hsiung, S. Desai, P. R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. W. Huang, A. Koski, J. M. Schmitt, J. G. Fujimoto, and H. Mashimo, "Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology," Endoscopy 39, 599-605 (2007). [CrossRef] [PubMed]
  11. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nature Biotechnol. 21, 1361-1367 (2003). [CrossRef]
  12. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, "Texture analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-575 (2003). [CrossRef] [PubMed]
  13. X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, "Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography," J. Biomed. Opt. 11, 044010 (2006). [CrossRef] [PubMed]
  14. X. Qi, Y. Pan, Z. Hu, W. Kang, J. E. Willis, K. Olowe, M. V. Sivak, Jr., and A. M. Rollins, "Automated quantification of colonic crypt morphology using integrated microscopy and optical coherence tomography," J. Biomed. Opt. 13, 054055 (2008). [CrossRef] [PubMed]
  15. Y. Chen, A. D. Aguirre, P. Hsiung, S. W. Huang, H. Mashimo, J. M. Schmitt, and J. G. Fujimoto, "Effects of Axial Resolution Improvement on Optical Coherence Tomography (OCT) Imaging of Gastrointestinal Tissues," Opt. Express 16, 2469-2485 (2008). [CrossRef] [PubMed]
  16. Y. Chen, P. M. Andrews, A. D. Aguirre, J. M. Schmitt, and J. G. Fujimoto, "High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo," J. Biomed. Opt. 12, 034008 (2007). [CrossRef] [PubMed]
  17. P. M. Andrews, B. S. Khirabadi, and B. C. Bengs, "Using tandem scanning confocal microscopy to predict the status of donor kidneys," Nephron 91, 148-155 (2002). [CrossRef] [PubMed]
  18. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, "High-resolution optical coherence tomography imaging of the living kidney," Lab. Investigation 88, 441-449 (2008). [CrossRef]
  19. O. B. Franc, C. Stefano, V. S. Maria, G. Lorenzo, H. Yale, T. Stefano, and S. Antonio, "Automatic evaluation of arterial diameter variation from vascular echographic images," Ultrasound Med. Biol. 27, 1621-1629 (2001). [CrossRef]
  20. V. Gemignani, F. Faita, L. Ghiadoni, E. Poggianti, and M. Demi, "A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images," IEEE transactions on Medical Imaging 26, 393-404 (2007). [CrossRef] [PubMed]
  21. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  22. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall, 2007).
  23. L. Lam, S.-W. Lee, and C. Y. Suen, "Thinning Methodologies-A Comprehensive Survey," IEEE Trans. Pattern Anal. Machine Intelligence 14, 879 (1992). [CrossRef]
  24. T. J. Hall, M. F. Insana, L. A. Harrison, and G. G. Cox, "Ultrasonic measurement of glomerular diameters in normal adult humans," Ultrasound Med. Biol. 22, 987-997 (1996). [CrossRef] [PubMed]
  25. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  26. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  27. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalevicz, and J. S. Duker, "Ultrahigh resolution, high speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  28. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  29. S. Daiman, and I. Koni, "Glomerular enlargement in the progression of mesangial proliferative glomerulonephritis," Clin. Nephrol. 49, 145-152 (1998).
  30. E. Nyberg, S. O. Bohman, and U. Berg, "Glomerular volume and renal function in children with different types of nephrotic syndrome," Pediatr. Nephrol. 8, 285-289 (1994). [CrossRef] [PubMed]
  31. Q2. H. J. Gunderson, and R. Osterby, "Glomerular size and structure in diabetes mellitus II. Late abnormalities," Disbetologia 13, 43-48 (1977). [CrossRef]
  32. K. Moran, J. Mulhall, D. Kelly, S. Sheehan, J. Dowsett, P. Dervan, and J. M. Fitzpatrick, "Morphological changes and alterations in regional intrarenal blood flow induced by graded renal ischemia," J. Urology 148, 463-466 (1992).
  33. W. F. Ganong, Review of Medical Physiology, (The McGraw-Hill Companies, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (480 KB)      QuickTime
» Media 2: AVI (3089 KB)      QuickTime
» Media 3: AVI (2529 KB)      QuickTime
» Media 4: AVI (3159 KB)      QuickTime
» Media 5: AVI (2558 KB)      QuickTime
» Media 6: AVI (3852 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited