OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16081–16091

Blue-shift of surface plasmon resonance in a metal nanoslit array structure

Yun Suk Jung, Jeff Wuenschell, Hong Koo Kim, Palwinder Kaur, and David H. Waldeck  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16081-16091 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (5963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The adsorption of a self-assembled monolayer of molecules on a metal surface commonly causes a red-shift in its surface plasmon resonance. We report that the anomalous dispersion of surface plasmons in a Au nanoslit array structure can cause a blue-shift of optical transmission upon adsorption of a non-absorbing self-assembled monolayer of molecules. We develop a simple model that explains the blue-shift observed in the transmission spectra with monolayer adsorption in terms of the interplay of anomalous dispersion and the cavity resonance of surface plasmons in the nanoslit array.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: July 13, 2009
Manuscript Accepted: August 12, 2009
Published: August 26, 2009

Yun Suk Jung, Jeff Wuenschell, Hong Koo Kim, Palwinder Kaur, and David H. Waldeck, "Blue-shift of surface plasmon resonance in a metal nanoslit array structure," Opt. Express 17, 16081-16091 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, NJ, 1999), Chap 7.
  2. R. W. Boyd, and D. J. Gauthier, Progress in Optics, Vol. 43, E. Wolf, ed. (Elsevier, 2002), Chap 6.
  3. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982). [CrossRef]
  4. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994). [CrossRef] [PubMed]
  5. A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001). [CrossRef]
  6. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999). [CrossRef]
  7. G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).
  8. G. Wähling, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 36a, 588–594 (1981).
  9. I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982). [CrossRef]
  10. I. Pockrand and J. D. Swalen, “Anomalous dispersion of surface plasma oscillations,” J. Opt. Soc. Am. 68(8), 1147–1151 (1978). [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  12. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003). [CrossRef]
  13. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007). [CrossRef] [PubMed]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  15. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  16. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005). [CrossRef] [PubMed]
  19. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008). [CrossRef]
  20. Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006). [CrossRef]
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001). [CrossRef]
  22. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009). [CrossRef]
  23. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004). [CrossRef]
  24. E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).
  25. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, Hoboken, NJ, 2000).
  26. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited