OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16100–16110

A STED microscope aligned by design

Dominik Wildanger, Johanna Bückers, Volker Westphal, Stefan W. Hell, and Lars Kastrup  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16100-16110 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



STED microscopes are commonly built using separate optical paths for the excitation and the STED beam. As a result, the beams must be co-aligned and can be subject to mechanical drift. Here, we present a single-path STED microscope whose beams are aligned by design and hence is insensitive to mechanical drift. The design of a phase plate is described which selectively modulates the STED beam but leaves the excitation beam unaffected. The performance of the single-beam setup is on par with previous dual-beam designs.

© 2009 OSA

OCIS Codes
(100.5090) Image processing : Phase-only filters
(180.2520) Microscopy : Fluorescence microscopy
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: July 28, 2009
Revised Manuscript: August 17, 2009
Manuscript Accepted: August 19, 2009
Published: August 26, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Dominik Wildanger, Johanna Bückers, Volker Westphal, Stefan W. Hell, and Lars Kastrup, "A STED microscope aligned by design," Opt. Express 17, 16100-16110 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [CrossRef] [PubMed]
  3. V. Westphal and S. W. Hell, “Nanoscale Resolution in the Focal Plane of an Optical Microscope,” Phys. Rev. Lett. 94(14), 143903–143904 (2005). [CrossRef] [PubMed]
  4. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  5. S. W. Hell, “Far-Field Optical Nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  6. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  7. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  8. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc. (2009), doi:. [CrossRef] [PubMed]
  9. H.-Y. Tsai, H. I. Smith, and R. Menon, “Reduction of focal-spot size using dichromats in absorbance modulation,” Opt. Lett. 33(24), 2916–2918 (2008). [CrossRef] [PubMed]
  10. R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffractive lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A 26(2), 297–304 (2009). [CrossRef]
  11. L. Kastrup, and V. Westphal, “Wavelength or polarisation sensitive optical assembly and use thereof,” German Patent DE102007025688A1, 2007/06/01.
  12. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [CrossRef] [PubMed]
  13. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22(5), 849–861 (2005). [CrossRef]
  14. G.-H. Kim, J.-H. Jeon, K.-H. Ko, H.-J. Moon, J.-H. Lee, and J.-S. Chang, “Optical vortices produced with a nonspiral phase plate,” Appl. Opt. 36(33), 8614–8621 (1997). [CrossRef]
  15. V. G. Shvedov, Y. V. Izdebskaya, A. N. Alekseev, and A. V. Volyar, “The formation of optical vortices in the course of light diffraction on a dielectric wedge,” Tech. Phys. Lett. 28(3), 256–259 (2002). [CrossRef]
  16. X.-C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86(2), 209–213 (2007). [CrossRef]
  17. I. Gregor and J. Enderlein, “Focusing astigmatic Gaussian beams through optical systems with a high numerical aperture,” Opt. Lett. 30(19), 2527–2529 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited