OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16119–16134

Analysis and design of transmittance for an antireflective surface microstructure

Xufeng Jing, Jianyong Ma, Shijie Liu, Yunxia Jin, Hongbo He, Jianda Shao, and Zhengxiu Fan  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16119-16134 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to easily analyze and design the transmittance characteristics of an antireflective surface called the ‘moth-eye structure’, the validity of both scalar diffraction theory and effective medium theory is quantitatively evaluated by a comparison of diffraction efficiencies predicted from both simplified theories to exact results calculated by a rigorous electromagnetic theory. The effect of surface microstructure parameters including the normalized period and the normalized depth has been determined at normal incidence. It is found that, in general, when the normalized period is more than four wavelengths of the incident light the scalar diffraction theory is useful within the error of 5%. Besides, the effective medium theory is accurate for evaluating the diffraction efficiency within the error of less than 1% when the higher order diffraction waves other than zero order wave is not to propagate. In addition, the limitation of scalar diffraction method and effective refractive index method is dependent on not only the normalized period of surface profile but also the normalized groove depth.

© 2009 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: May 15, 2009
Revised Manuscript: June 22, 2009
Manuscript Accepted: July 1, 2009
Published: August 26, 2009

Xufeng Jing, Jianyong Ma, Shijie Liu, Yunxia Jin, Hongbo He, Jianda Shao, and Zhengxiu Fan, "Analysis and design of transmittance for an antireflective surface microstructure," Opt. Express 17, 16119-16134 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33(19), 2224–2226 (2008). [CrossRef] [PubMed]
  2. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  3. D. Yi, Y. B. Yan, H. T. Liu, S. Lu, and G. F. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004). [CrossRef] [PubMed]
  4. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef]
  5. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  6. D. S. Hobbs and B. D. MacLeod, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE 5786, 349–364 (2005). [CrossRef]
  7. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007). [CrossRef]
  8. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982). [CrossRef]
  9. L. F. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993). [CrossRef]
  10. W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, and Y. Fainman, “Ultra shot pulse propagation in near-field periodic diffractive structures by rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18(5), 1072–1081 (2001). [CrossRef]
  11. T. Hoshino, S. Banerjee, M. Itoh, and T. Yatagai, “Diffraction pattern of triangular grating in the resonance domain,” J. Opt. Soc. Am. A 26(3), 715–722 (2009). [CrossRef]
  12. T.-X. Lee, C.-Y. Lin, S.-H. Ma, and C.-C. Sun, “Analysis of position-dependent light extraction of GaN-based LEDs,” Opt. Express 13(11), 4175–4179 (2005). [CrossRef] [PubMed]
  13. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11(6), 1827–1834 (1994). [CrossRef]
  14. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993). [CrossRef] [PubMed]
  15. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993). [CrossRef] [PubMed]
  16. S.-J. Liu, J. Shen, Z.-C. Shen, W.-J. Kong, C.-Y. Wei, Y.-X. Jin, J.-D. Shao, and Z.-X. Fan, “Near-field optical property of multi-layer dielectric gratings for pulse compressor,” Chin. Phys. Soc. 55, 4588–4594 (2006) (in Chinese).
  17. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997). [CrossRef]
  18. J. Y. Ma, S. J. Liu, Y. X. Jin, C. Xu, J. D. Shao, and Z. X. Fan, “Novel method for design of surface relief guided-mode resonant gratings at normal incidence,” Opt. Commun. 281(12), 3295–3300 (2008). [CrossRef]
  19. L. F. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20(4), 655–660 (2003). [CrossRef]
  20. J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. A 7(8), 1529–1544 (1990). [CrossRef]
  21. R. C. McPhedran, L. C. Botten, M. S. Craig, M. Nevière, and D. Maystre, “Lossy Lamellar Gratings in the Quasistatic Limit,” J. Mod. Opt. 29(3), 289–312 (1982).
  22. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  23. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33(13), 2695–2706 (1994). [CrossRef] [PubMed]
  24. J. G. Wang, J. D. Shao, S. M. Wang, H. B. He, and Z. X. Fan, “Antireflective characteristics of triangular shaped gratings,” Chin. Opt. Lett. 03, 497 (2005).
  25. H. A. Macleod, Thin Film Optical Filters (Institute of Physics Publishing, Bristol, 2001), pp.41.
  26. R. Petit, ed., Electromagnetic Theory of Gratings (Springer- Verlag, Berlin, 1980), pp. 15.
  27. M. C. Hutley, Diffraction Gratings (Academic, London, 1982), pp. 184.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited