OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16144–16159

Micro-step localization using double charge optical vortex interferometer

Jan Masajada, Monika Leniec, Sławomir Drobczyński, Hugo Thienpont, and Bernard Kress  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16144-16159 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the diffraction effects of focused Gaussian beams yielding a double optical vortex by a nano-step structure fabricated in a transparent media. When approaching such a step the double vortex splits into single ones which move in a characteristic way. By observing this movement we can determine the position of the step with high resolution. Our theoretical predictions were verified experimentally.

© 2009 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.1960) Physical optics : Diffraction theory

ToC Category:
Imaging Systems

Original Manuscript: June 22, 2009
Revised Manuscript: July 31, 2009
Manuscript Accepted: August 11, 2009
Published: August 26, 2009

Jan Masajada, Monika Leniec, Sławomir Drobczyński, Hugo Thienpont, and Bernard Kress, "Micro-step localization using double charge optical vortex interferometer," Opt. Express 17, 16144-16159 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Masajada, M. Leniec, E. Jankowska, H. Thienpont, H. Ottevaere, and V. Gomez, “Deep microstructure topography characterization with optical vortex interferometer,” Opt. Express 16(23), 19179–19191 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-19179 . [CrossRef]
  2. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001). [CrossRef]
  3. J J. Masajada, “Small-angle rotations measurement using optical vortex interferometer,” Opt. Commun. 239(4-6), 373–381 (2004). [CrossRef]
  4. A. Popiołek-Masajada, M. Borwińska, and W. Frączek, “Testing a new method for small-angle rotation measurements with the optical vortex interferometer,” Meas. Sci. Technol. 17(4), 653–658 (2006). [CrossRef]
  5. P. Kurzynowski, W. A. Woźniak, and E. Frą Czek, “Optical vortices generation using the Wollaston prism,” Appl. Opt. 45(30), 7898–7903 (2006). [CrossRef] [PubMed]
  6. P. Kurzynowski and M. Borwińska, “Generation of vortex-type markers in a one-wave setup,” Appl. Opt. 46(5), 676–679 (2007). [CrossRef] [PubMed]
  7. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Appl. Opt. 46(15), 2893–2898 (2007). [CrossRef] [PubMed]
  8. J. Masajada, “The interferometry based on the regular lattice of optical vortices,” Opt. Appl. 37, 167–185 (2007).
  9. M. S. Soskin, and M. V. Vasnetsov, “Singular Optics,” Prog Opt. Amsterdam Elsevier, Vol 42, pp. 219–276 (2001)
  10. A. S. Desyatnikov, L. Tornel, and Y. S. Kivshar, “Optical vortices and vortex solitons,” Progress in Optics, vol.47 (Amsterdam Elsevier) chapter 5, 2005.
  11. W. Wang, T. Yokozeki, R. Ishijima, A. Wada, Y. Miyamoto, M. Takeda, and S. G. Hanson, “Optical vortex metrology for nanometric speckle displacement measurement,” Opt. Express 14(1), 120–127 (2006). [CrossRef] [PubMed]
  12. V. P. Tychinsky, and C. H. F. Velzel, Super-resolution in Microscopy; in: Current trends in optics, (Academic Press, 1994), Chap. 18.
  13. M. Totzeck and H. J. Tiziani, “Phase-singularities in 2D diffraction fields and interference microscopy,” Opt. Commun. 138(4-6), 365–382 (1997). [CrossRef]
  14. B. Sektor, A. Normatov, and J. Shamir, “Experimental validation of 20nm sensitivity of Singular Beam Microscopy,” Proc. SPIE 6616, 661622 (2007). [CrossRef]
  15. B. Spektor, A. Normatov, and J. Shamir, “Singular Beam Microscopy,” Appl. Opt. 47(4), A78–A87 (2008). [CrossRef] [PubMed]
  16. E. Frączek and G. Budzyń, “An analysis of an optical vortices interferometer with focused beam,” Opt. Appl. 39, 91–99 (2009).
  17. S. Hell, “Strategy for far-field optical imaging and writing without diffraction limit,” Phys. Lett. A 326(1-2), 140–145 (2004). [CrossRef]
  18. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008). [CrossRef]
  19. L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” N. J. Phys. 10(2), 023015 (2008). [CrossRef]
  20. G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005). [CrossRef]
  21. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations, and optical superresolution without evanescent waves,” J. Phys. A 39(22), 6965–6977 (2006). [CrossRef]
  22. L. Singher, J. Shamir, and A. Brunfeld, “Focused-beam interaction with a phase step,” Opt. Lett. 16(2), 61–63 (1991). [CrossRef] [PubMed]
  23. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22(5), 658–661 (1983). [CrossRef] [PubMed]
  24. A. Erdèlyi, ed., Tables of integral transforms, McGraw-Hill, New York 1953.
  25. Z. S. Sacks, D. Rozas, and G. A. Swartzlander., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8), 2226–2234 (1998). [CrossRef]
  26. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices,” J. Opt. Soc. Am. A 21(11), 2089–2096 (2004). [CrossRef]
  27. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14(12), 5581–5587 (2006). [CrossRef] [PubMed]
  28. J. B. Bentley, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, “Generation of helical Ince-Gaussian beams with a liquid-crystal display,” Opt. Lett. 31(5), 649–651 (2006). [CrossRef] [PubMed]
  29. G. A. Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]
  30. B. Kress, and P. Meyrueis, Applied Digital Optics: from micro-optics to nano-photonics, Edited by John Wiley and Sons, Chichester, UK, April 2009.
  31. R. K. Singh, P. Senthilkumaran, and K. Singh, “Tight focusing of vortex beams in presence of primary astigmatism,” J. Opt. Soc. Am. A 26(3), 576–588 (2009). [CrossRef]
  32. R. K. Singh, P. Senthilkumaran, and K. Singh, “Structure of a tightly focused vortex beam in the presence of primary coma,” Opt. Commun. 282(8), 1501–1510 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited