OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16225–16237

SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers

Marc D. Mermelstein  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16225-16237 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 4.3 dB stimulated Brillouin scattering (SBS) threshold suppression is measured in a passive Al-doped acoustically anti-guiding single mode optical fiber relative to that of a Ge-doped acoustically guiding single mode optical fiber. Stimulated scattering is generated by the electrostrictive acoustic wave generated in the fiber core. This acoustic excitation has a decay length Ld related to the sound absorption decay length Labs and the acoustic waveguide decay length Lwg by: Ld−1= Labs−1+ Lwg−1. The acoustic waveguide decay length Lwg is associated with the diffraction, refraction and reflection of the acoustic wave in the elastically inhomogeneous optical fiber cores. The SBS gain is proportional to the net acoustic decay length Ld and the relative SBS suppression is proportional to the ratio of the net decay lengths of the Al and Ge doped cores (LAl/ LGe). An acoustic beam propagation model is used to calculate the evolution of the complex acoustic excitations in the optical cores and determine the acoustic wave decay lengths Lwg. Model predictions for the relative SBS suppression for the two fibers are in good agreement with experimental values obtained from Stokes power and optical heterodyne linewidth measurements.

© 2009 OSA

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 6, 2009
Revised Manuscript: July 27, 2009
Manuscript Accepted: July 27, 2009
Published: August 27, 2009

Marc D. Mermelstein, "SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers," Opt. Express 17, 16225-16237 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cotter, “Stimulated Brillouin scattering in monomode optical fibers,” J. Opt. Commun. 4, 10–19 (1983). [CrossRef]
  2. D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993). [CrossRef]
  3. G. Kulcsar, Y. Jaouen, G. Canat, E. Olmedo, and G. Debarge, “Multi-Stokes stimulated Brillouin scattering generated in pulsed high-power double cladding Er-Yb codoped fiber amplifiers,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003). [CrossRef]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007). [CrossRef]
  5. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008). [CrossRef] [PubMed]
  6. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996). [CrossRef]
  7. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photon. Technol. Lett. 1(5), 107–108 (1989). [CrossRef]
  8. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001). [CrossRef]
  9. M. D. Mermelstein, A. D. Yablon and C. Headley, “Suppression of Stimulated Brillouin Scattering in Er-Yb Fiber Amplifiers Utilizing Temperature-Segmentation,” Optical Amplifiers and Their Applications, paper TuD3 (2005).
  10. P. D. Dragic, “Acoustical-optical fibers for control of stimulated Brillouin scattering,” in 2006 Digest of the LEOS Summer Topical Meeting, 3–4 (2006).
  11. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno., “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  12. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. G. DiGiovanni, and A. H. McCurdy, “11.2 dB SBS gain suppression in large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008).
  13. S. Yoo, J. K. Sahu, and J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference (Optical Society of America, Washington, DC, 2008).
  14. B. G. Ward and J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951H (2009). [CrossRef]
  15. G. P. Agrawal, Non-Linear Optics, (Academic Press, San Diego, 1995).
  16. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, (Springer Verlag, New York, 1985).
  17. M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi, “SBS gain efficiency and modeling in 1714 μm2 effective area LP08 higher-order mode optical fiber,” Opt. Express 15(24), 15952–15963 (2007). [CrossRef] [PubMed]
  18. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994). [CrossRef]
  19. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  20. I. L. Fabelinskii, Molecular Scattering of Light,”(Plenum Press, 1968).
  21. H. Z. Cummins, and P. Schoen, Linear scattering from thermal fluctuations, in Laser Handbook (North Holland, Amsterdam 1971).
  22. E.-G. Neumann, Single Mode Fibers, (Springer Verlag, New York, 1985).
  23. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990). [CrossRef] [PubMed]
  24. R. W. Boyd, Non-linear Optics, (Academic Press, New York, 2003).
  25. G. Barton, Elements of Green’s Functions and Propagation, (Oxford University Press, New York, 1989).
  26. J. Yamauchi, Y. Akimoto, M. Nibe, and H. Nakano, “Wide-angle propagating beam analysis for circularly symmetric waveguides: comparison between FD-BPM and FD-BPM,” IEEE Photon. Technol. Lett. 8(2), 236–238 (1996). [CrossRef]
  27. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and Designing Brillouin gain spectra in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004). [CrossRef]
  28. P. D. Dragic, “SBS-suppressed single mode Yb-doped fiber amplifiers,” Proc. OFC-NFOEC,2009, JThA10.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited