OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16255–16265

Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems

Florian Jansen, Dirk Nodop, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 16255-16265 (2009)
http://dx.doi.org/10.1364/OE.17.016255


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the simulation of stimulated Raman scattering inhibition by lumped spectral filters both in passive optical transport fibers and in fiber amplifiers. The paper includes a detailed theoretical study that reveals the parameters that have the strongest influence on the suppression of the Raman scattering, such as the filter distribution and the insertion losses at the signal wavelength. This study provides guidelines for the use of spectral filtering elements, such as long period gratings, for Raman scattering inhibition in real-world high power fiber amplifiers.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(290.5910) Scattering : Scattering, stimulated Raman
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 21, 2009
Revised Manuscript: July 29, 2009
Manuscript Accepted: August 5, 2009
Published: August 28, 2009

Citation
Florian Jansen, Dirk Nodop, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, "Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems," Opt. Express 17, 16255-16265 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006). [CrossRef] [PubMed]
  2. L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005). [CrossRef] [PubMed]
  3. T. H. Russell, “Laser intensity scaling through stimulated scattering in optical fibers”, Air Force Institute of Technology, dissertation (2001).
  4. F. Jansen, C. Jauregui, D. Nodop, J. Limpert, and A. Tünnermann, “Modeling the suppression of stimulated Raman scattering in active and passive fibers by lumped spectral filtering elements”, presented at the Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 14–19 June 2009, CJ.P.15.
  5. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006). [CrossRef] [PubMed]
  6. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009). [CrossRef] [PubMed]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  8. V. Grubsky and J. Feinberg, “Fabrication of axially symmetric long-period gratings with a carbon dioxide laser,” IEEE Photon. Technol. Lett. 18(21), 2296–2298 (2006). [CrossRef]
  9. D. Nodop, S. Linke, F. Jansen, J. Limpert, A. Tünnermann, and L. Rindorf, “Long period gratings written in large-mode area photonic crystal fiber,” Appl. Phys. B 92(4), 509–512 (2008). [CrossRef]
  10. H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photon. Technol. Lett. 20(8), 611–613 (2008). [CrossRef]
  11. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19(10), 1574 (2001). [CrossRef]
  12. Y. Wang, C. Q. Xu, and H. Po, “Analysis of Raman and thermal effects in kilowatt fiber lasers,” Opt. Commun. 242(4-6), 487–502 (2004). [CrossRef]
  13. G. P. Agrawal, “Nonlinear Fiber Optics”, Fourth Edition, Academic Press (2007).
  14. C. Jauregui, J. Limpert, and A. Tünnermann, “Derivation of Raman treshold formulas for CW double-clad fiber amplifiers,” Opt. Express 17(10), 8476–8490 (2009). [CrossRef] [PubMed]
  15. C. Jauregui, T. Eidam, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Raman Threshold for CW Double-Clad Fiber Amplifiers”, Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB27.
  16. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited