OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16322–16331

Quadrature phase-shift error analysis using a homodyne laser interferometer

Peter Gregorčič, Tomaž Požar, and Janez Možina  »View Author Affiliations

Optics Express, Vol. 17, Issue 18, pp. 16322-16331 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of quadrature phase shift on the measured displacement error was experimentally investigated using a two-detector polarizing homodyne laser interferometer with a quadrature detection system. Common nonlinearities, including the phase-shift error, were determined and effectively corrected by a robust data-processing algorithm. The measured phase-shift error perfectly agrees with the theoretically determined phase-shift error region. This error is systematic, periodic and severely asymmetrical around the nominal displacement value. The main results presented in this paper can also be used to assess and correct the detector errors of other interferometric and non-interferometric displacement-measuring devices based on phase-quadrature detection.

© 2009 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.5440) Optical devices : Polarization-selective devices
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 11, 2009
Revised Manuscript: August 25, 2009
Manuscript Accepted: August 25, 2009
Published: August 28, 2009

Peter Gregorčič, Tomaž Požar, and Janez Možina, "Quadrature phase-shift error analysis using a homodyne laser interferometer," Opt. Express 17, 16322-16331 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4(9), 907–926 (1993). [CrossRef]
  2. R. Reibold and W. Molkenstruck, “Laser interferometric measurement and computerized evaluation of ultrasonic displacements,” Acustica 49, 205–211 (1981).
  3. V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995). [CrossRef]
  4. T. Keem, S. Gonda, I. Misumi, Q. Huang, and T. Kurosawa, “Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems,” Appl. Opt. 43(12), 2443–2448 (2004). [CrossRef] [PubMed]
  5. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005). [CrossRef] [PubMed]
  6. L. M. Sanchez-Brea and T. Morlanes, “Metrological errors in optical encoders,” Meas. Sci. Technol. 19(11), 115104 (2008). [CrossRef]
  7. T. Požar, R. Petkovšek, and J. Možina, “Dispersion of an optodynamic wave during its multiple transitions in a rod,” Appl. Phys. Lett. 92(23), 234101–234103 (2008). [CrossRef]
  8. G. L. Dai, F. Pohlenz, H. U. Danzebrink, K. Hasche, and G. Wilkening, “Improving the performance of interferometers in metrological scanning probe microscopes,” Meas. Sci. Technol. 15(2), 444–450 (2004). [CrossRef]
  9. N.-I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vazquez-Castillo, “Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry,” Opt. Express 16(23), 19330–19341 (2008). [CrossRef]
  10. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20(19), 3382–3384 (1981). [CrossRef] [PubMed]
  11. C.-M. Wu and C.-S. Su, “Nonlinearity in measurements of length by optical interferometry,” Meas. Sci. Technol. 7(1), 62–68 (1996). [CrossRef]
  12. T. Usuda and T. Kurosawa, “Calibration methods for vibration transducers and their uncertainties,” Metrologia 36(4), 375–383 (1999). [CrossRef]
  13. K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precis. Eng. 12(4), 195–198 (1990). [CrossRef]
  14. C.-M. Wu, C.-S. Su, and G.-S. Peng, “Correction of nonlinearity in one-frequency optical interferometry,” Meas. Sci. Technol. 7(4), 520–524 (1996). [CrossRef]
  15. T. Eom, J. Kim, and K. Jeong, “The dynamic compensation of nonlinearity in a homodyne laser interferometer,” Meas. Sci. Technol. 12(10), 1734–1738 (2001). [CrossRef]
  16. J.-A. Kim, J. W. Kim, C.-S. Kang, T. B. Eom, and J. Ahn, “A digital signal processing module for real-time compensation of nonlinearity in a homodyne interferometer using a field-programmable gate array,” Meas. Sci. Technol. 20(1), 017003 (2009). [CrossRef]
  17. C. B. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications, (Adam Hilger, Bristol, 1990).
  18. I. Dániel, “Advanced successive phase unwrapping algorithm for quadrature output Michelson interferometers,” Measurement 37(2), 95–102 (2005). [CrossRef]
  19. M. Pisani, “Multiple reflection Michelson interferometer with picometer resolution,” Opt. Express 16(26), 21558–21563 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited