OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16625–16631

Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element

Yuankun Lin, Ahmad Harb, Karen Lozano, Di Xu, and K. P. Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16625-16631 (2009)
http://dx.doi.org/10.1364/OE.17.016625


View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four first-order diffracted beams from the gratings and one non-diffracted central beam overlap and form a three-dimensional interference pattern. The phase of one side beam is delayed by inserting a thin piece of microscope glass slide into the beam. By rotating the glass slide, thus tuning the phase of the side beam, the five beam interference pattern changes from face-center tetragonal symmetry into diamond-like lattice symmetry with an optimal bandgap. Three-dimensional photonic crystal templates are produced in a photoresist and show the phase tuning effect for bandgap optimization. Furthermore, by integrating an amplitude mask in the central opening, line defects are produced within the photonic crystal template. This paper presents the first experimental demonstration on the holographic fabrication approach of three-dimensional photonic crystal templates with functional defects by a single laser exposure using a single optical element.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(050.5298) Diffraction and gratings : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: July 13, 2009
Revised Manuscript: August 26, 2009
Manuscript Accepted: August 31, 2009
Published: September 2, 2009

Citation
Yuankun Lin, Ahmad Harb, Karen Lozano, Di Xu, and K. P. Chen, "Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element," Opt. Express 17, 16625-16631 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16625


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Commun. 89(5), 413–416 (1994). [CrossRef]
  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, A. Geoffrey, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405(6785), 437–440 (2000). [CrossRef] [PubMed]
  5. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004). [CrossRef] [PubMed]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000). [CrossRef] [PubMed]
  7. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, “Creating periodic three-dimensional structures by multibeam interference of visible laser,” Chem. Mater. 14(7), 2831–2833 (2002). [CrossRef]
  8. T. Y. M. Chan, O. Toader, and S. John, “Photonic band-gap formation by optical-phase-mask lithography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046610 (2006). [CrossRef] [PubMed]
  9. O. Toader, T. Y. M. Chan, and S. John, “Diamond photonic band gap synthesis by umbrella holographic lithography,” Appl. Phys. Lett. 89(10), 101117 (2006). [CrossRef]
  10. Y. Zhong, L. Wu, H. Su, K. S. Wong, and H. Wang, “Fabrication of photonic crystals with tunable surface orientation by holographic lithography,” Opt. Express 14(15), 6837–6843 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6837 . [CrossRef] [PubMed]
  11. Y. K. Pang, J. C. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9113–9119 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9113 . [CrossRef] [PubMed]
  12. Y. Lin, P. R. Herman, and K. Darmawikarta, “Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals,” Appl. Phys. Lett. 86(7), 071117 (2005). [CrossRef]
  13. Y. Lin, A. Harb, D. Rodriguez, K. Lozano, D. Xu, and K. P. Chen, “Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal,” Opt. Express 16(12), 9165–9172 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9165 . [CrossRef] [PubMed]
  14. D. Chanda, L. E. Abolghasemi, M. Haque, M. L. Ng, and P. R. Herman, “Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals,” Opt. Express 16(20), 15402–15414 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15402 . [CrossRef] [PubMed]
  15. C. Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, “Diffraction element assisted lithography: Pattern control for photonic crystal fabrication,” Appl. Phys. Lett. 86(19), 193110 (2005). [CrossRef]
  16. D. Shir, E. C. Nelson, Y. C. Chen, A. Brzezinski, H. Liao, P. V. Braun, P. Wiltzius, K. H. A. Bogart, and J. A. Rogers, “Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography,” Appl. Phys. Lett. 94(1), 011101 (2009). [CrossRef]
  17. J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16(17), 12899–12904 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12899 . [CrossRef] [PubMed]
  18. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, “Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography,” Appl. Phys. Lett. 82(11), 1667–1669 (2003). [CrossRef]
  19. J. Moon, S. Yang, D. Pine, and S.-M. Yang, “Translation of interference pattern by phase shift for diamond photonic crystals,” Opt. Express 13(24), 9841–9846 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9841 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited