OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16722–16730

Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16722-16730 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental results showing that quantum correlated light can be produced using non-degenerate, off-resonant, four-wave mixing (4WM) on both the D1 (795 nm) and D2 (780 nm) lines of 85Rb and 87Rb, extending earlier work on the D1 line of 85Rb. Using this 4WM process in a hot vapor cell to produce bright twin beams, we characterize the degree of intensity-difference noise reduction below the standard quantum limit for each of the four systems. Although each system approximates a double-lambda configuration, differences in details of the actual level structure lead to varying degrees of noise reduction. The observation of quantum correlations on light produced using all four of these systems, regardless of their substructure, suggests that it should be possible to use other systems with similar level structures in order to produce narrow frequency, non-classical beams at a particular wavelength.

© 2009 OSA

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: July 22, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: August 25, 2009
Published: September 3, 2009

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, "Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb," Opt. Express 17, 16722-16730 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985). [CrossRef] [PubMed]
  2. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett. 36(2), 93–98 (1996). [CrossRef]
  3. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004). [CrossRef] [PubMed]
  4. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]
  5. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98(24), 243602 (2007). [CrossRef] [PubMed]
  6. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008). [CrossRef] [PubMed]
  7. G. Hètet, B. C. Buchler, O. Glöeckl, M. T. L. Hsu, A. M. Akulshin, H. A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16(10), 7369–7381 (2008). [CrossRef] [PubMed]
  8. G. Hétet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40(1), 221–226 (2007). [CrossRef]
  9. S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98 (2008). [CrossRef]
  10. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72(3), 033601 (2005). [CrossRef]
  11. P. D. Lett, “Correlated photons for correlated atoms,” J. Mod. Opt. 51, 1817 (2004).
  12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]
  13. J. Laurat, L. Longchambon, C. Fabre, and T. Coudreau, “Experimental investigation of amplitude and phase quantum correlations in a type II optical parametric oscillator above threshold: from nondegenerate to degenerate operation,” Opt. Lett. 30(10), 1177–1179 (2005). [CrossRef] [PubMed]
  14. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008). [CrossRef] [PubMed]
  15. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]
  16. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009). [CrossRef] [PubMed]
  17. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  18. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008). [CrossRef] [PubMed]
  19. C. M. Caves, “Quantum Limits on Noise in Linear-Amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982). [CrossRef]
  20. M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158(1-6), 273–286 (1998). [CrossRef]
  21. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81(13), 2675–2678 (1998). [CrossRef]
  22. M. D. Lukin, A. B. Matsko, Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999). [CrossRef]
  23. M. D. Lukin, P. R. Hemmer, and M.O. Scully, "Resonant nonlinear optics in phase coherent media," in Advances in Atomic, Molecular, and Optical Physics 42, Elsevier (1999).
  24. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002). [CrossRef]
  25. D. A. Steck, "Rubidium 85 D line data," http://steck.us/alkalidata (revision 0.2 1 September 2008); D. A. Steck, "Rubidium 87 D line data," http://steck.us/alkalidata (revision 2.1, 1 September 2008).
  26. F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, "Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line," Phys. Rev. A 55(5), 3710-;3718 (1997). [CrossRef]
  27. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “ Comparison of 87Rb N-resonances for D1 and D2 transitions,” Opt. Lett. 31(15), 2353 (2006). [CrossRef] [PubMed]
  28. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited