OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16885–16897

Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16885-16897 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multipixel silicon avalanche photodiodes (Si APDs) are novel photodetectors used as silicon photomultipliers (SiPMs), or multipixel photon counter (MPPC), because they have fast response, photon-number resolution, and a high count rate; one drawback, however, is the high dark count rate. We developed a system for cooling an MPPC to liquid nitrogen temperature and thus reduce the dark count rate. Our system achieved dark count rates of <0.2 cps. Here we present the afterpulse probability, counting capability, timing jitter, and photon-number resolution of our system at 78.5 K and 295 K.

© 2009 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.5160) Detectors : Photodetectors
(040.5570) Detectors : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: June 22, 2009
Revised Manuscript: August 13, 2009
Manuscript Accepted: August 31, 2009
Published: September 8, 2009

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17, 16885-16897 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers,” Phys. Rev. A 78(2), 022320 (2008). [CrossRef]
  3. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14(26), 13073–13082 (2006). [CrossRef] [PubMed]
  4. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008). [CrossRef]
  5. E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92(11), 113602 (2004). [CrossRef] [PubMed]
  6. T. Moroder, M. Curty, and N. Lutkenhaus, “Detector decoy quantum key distribution,” arXiv:0811.0027v1 [quant-ph] (2008).
  7. M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, M. Szawlowski, and M. Kapusta, “Subnanosecond timing with large area avalanche photodiodes and LSO scintillator,” IEEE Trans. Nucl. Sci. 43(3), 1298–1302 (1996). [CrossRef]
  8. V. N. Solovov, F. Neves, V. Chepel, M. I. Lopes, R. F. Marques, and A. J. P. L. Policarpo, “Low temperature performance of a large area avalanche photodiode,” J. Mod. Opt. 51, 1351–1357 (2004).
  9. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  10. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008). [CrossRef]
  11. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Reduced deadtime and higher rate photon-counting detection using multiplexed detector array,” J. Mod. Opt. 54(2), 337–352 (2007). [CrossRef]
  12. K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003). [CrossRef] [PubMed]
  13. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387–2389 (2003). [CrossRef] [PubMed]
  14. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003). [CrossRef]
  15. G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Methods 442(1-3), 187–192 (2000). [CrossRef]
  16. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Methods 504(1-3), 48–52 (2003). [CrossRef]
  17. V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Methods 518(1-2), 560–564 (2004). [CrossRef]
  18. B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Calice/SiPM Collaboration, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods 563(2), 368–376 (2006). [CrossRef]
  19. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods 545(3), 705–715 (2005). [CrossRef]
  20. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express 15(22), 14539–14549 (2007). [CrossRef] [PubMed]
  21. N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, G. Llosa, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst,” Nucl. Instrum. Methods 572(1), 422–426 (2007). [CrossRef]
  22. E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Methods 571(1-2), 130–133 (2007). [CrossRef]
  23. M. Petasecca, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston, M. Ionica, A. Papi, G. U. Pignatel, and S. Haino, “Thermal and electrical characterization of silicon photomultiplier,” IEEE Trans. Nucl. Sci. 55(3), 1686–1690 (2008). [CrossRef]
  24. D. L. Robinson and B. D. Metscher, “Photon detection with cooled avalanche photodiodes,” Appl. Phys. Lett. 51(19), 1493–1494 (1987). [CrossRef]
  25. K. Tsujino, M. Akiba, and M. Sasaki, “Experimental determination of the gain distribution of an avalanche phtodiode at low gain,” IEEE Electron Device Lett. 30(1), 24–26 (2009). [CrossRef]
  26. J. J. Fox, N. Woodard, and G. P. Lafyatis, “Characterization of cooled large-area silicon avalanche photodiodes,” Rev. Sci. Instrum. 70(4), 1951–1956 (1999). [CrossRef]
  27. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993). [PubMed]
  28. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39(36), 6746–6753 (2000). [CrossRef]
  29. E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited