OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16969–16979

Detection and characterization of carbon contamination on EUV multilayer mirrors

Juequan Chen, Eric Louis, Chris J. Lee, Herbert Wormeester, Reinhard Kunze, Hagen Schmidt, Dieter Schneider, Roel Moors, Willem van Schaik, Monika Lubomska, and Fred Bijkerk  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 16969-16979 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we detect and characterize the carbon contamination layers that are formed during the illumination of extreme ultraviolet (EUV) multilayer mirrors. The EUV induced carbon layers were characterized ex situ using spectroscopic ellipsometry (SE) and laser generated surface acoustic waves (LG-SAW). We show that both LG-SAW and SE are very sensitive for measuring carbon layers, even in the presence of the highly heterogeneous structure of the multilayer. SE has better overall sensitivity, with a detection limit of 0.2 nm, while LG-SAW has an estimated detection limit of 2 nm. In addition, SE reveals that the optical properties of the EUV induced carbon contamination layer are consistent with the presence of a hydrogenated, polymeric like carbon. On the other hand, LG-SAW reveals that the EUV induced carbon contamination layer has a low Young’s modulus (<100 GPa), which means that the layer is mechanically soft. We compare the limits of detection and quantification of the two techniques and discuss their prospective for monitoring carbon contamination build up on EUV optics.

© 2009 OSA

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(310.6860) Thin films : Thin films, optical properties
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 6, 2009
Revised Manuscript: September 7, 2009
Manuscript Accepted: September 7, 2009
Published: September 9, 2009

Juequan Chen, Eric Louis, Chris J. Lee, Herbert Wormeester, Reinhard Kunze, Hagen Schmidt, Dieter Schneider, Roel Moors, Willem van Schaik, Monika Lubomska, and Fred Bijkerk, "Detection and characterization of carbon contamination on EUV multilayer mirrors," Opt. Express 17, 16969-16979 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Louis, A. E. Yakshin, P. C. Goerts, S. Oestreich, R. Stuik, L. G. M. Edward, M. J. H. Kessels, B. Fred, H. Markus, M. Stefan, M. Michael, S. Detlef, S. Frank, and U. Gerhard, “Progress in Mo/Si multilayer coating technology for EUVL optics,” Proc. SPIE 3997, 406–411 (2000). [CrossRef]
  2. J. Hollenshead and L. Klebanoff, “Modeling radiation-induced carbon contamination of extreme ultraviolet optics,” J. Vac. Sci. Technol. B 24(1), 64–82 (2006). [CrossRef]
  3. K.-J. Boller, R.-P. Haelbich, H. Hogrefe, W. Jark, and C. Kunz, “Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. 208(1-3), 273–279 (1983). [CrossRef]
  4. D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998). [CrossRef]
  5. S. Matsunari, T. Aoki, K. Murakami, Y. Gomei, S. Terashima, H. Takase, M. Tanabe, Y. Watanabe, Y. Kakutani, M. Niibe, and Y. Fukuda, “Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation,” Proc. SPIE 6517, 65172X–65178 (2007). [CrossRef]
  6. G. Kyriakou, D. J. Davis, R. B. Grant, D. J. Watson, A. Keen, M. S. Tikhov, and R. M. Lambert, “Electron impact-assisted carbon film growth on Ru(0001): Implications for next-generation EUV lithography,” J. Phys. Chem. C 111(12), 4491–4494 (2007). [CrossRef]
  7. N. Koster, B. Mertens, R. Jansen, A. van de Runstraat, F. Stietz, M. Wedowski, H. Meiling, R. Klein, A. Gottwald, F. Scholze, M. Visser, R. Kurt, P. Zalm, E. Louis, and A. Yakshin, “Molecular contamination mitigation in EUVL by environmental control,” Microelectron. Eng. 61–62(1-4), 65–76 (2002). [CrossRef]
  8. R. W. Collins, D. E. Aspnes, and E. A. Irene, “Spectroscopic ellipsometry”, in Proceedings of the 2nd international conference on spectroscopic ellipsometry, (Elsevier Science S.A., Lausanne, Switzerland, 1998).
  9. J. A. Woollam, C. L. Bungay, L. Yan, D. W. Thompson, and J. N. Hilfiker, “Application of spectroscopic ellipsometry to characterization of optical thin films,” Proc. SPIE 4932, 393–404 (2003). [CrossRef]
  10. J. A. Woollam, “Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part I: Basic Theory and Typical Applications,” Proc. the 44th SPIE meeting, (1999).
  11. D. J. Blaine, H. Jeff, J. I. Natale, M. H. Craig, E. T. Thomas, and A. W. John, “Recent developments in spectroscopic ellipsometry for in-situ applications,” Proc. SPIE 4449, 41–57 (2001). [CrossRef]
  12. B. Johs, “General virtual interface algorithm for in situ spectroscopic ellipsometric data analysis,” Thin Solid Films 455–456, 632–638 (2004). [CrossRef]
  13. J. A. Roth, W. S. Williamson, D. H. Chow, G. L. Olson, and B. Johs, “Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 18(3), 1439–1442 (2000). [CrossRef]
  14. D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1-2), 136–146 (1997). [CrossRef]
  15. D. Schneider, T. Schwarz, A. S. Bradford, Q. Shan, and R. J. Dewhurst, “Controlling the quality of thin films by surface acoustic waves,” Ultrasonics 35(5), 345–356 (1997). [CrossRef]
  16. E. Louis, H. J. Voorma, N. B. Koster, L. Shmaenok, F. Bijkerk, R. Schlatmann, J. Verhoeven, Y. Y. Platonov, G. E. Vandorssen, and H. A. Padmore, “Enhancement of Reflectivity of Multilayer Mirrors for Soft-X-Ray Projection Lithography by Temperature Optimization and Ion-Bombardment,” Microelectron. Eng. 23(1-4), 215–218 (1994). [CrossRef]
  17. K. Bergmann, O. Rosier, R. Lebert, W. Neff, and R. Poprawe, “A multi-kilohertz pinch plasma radiation source for extreme ultraviolet lithography,” Microelectron. Eng. 57–8, 71–77 (2001). [CrossRef]
  18. J. Chen, C. J. Lee, E. Louis, F. Bijkerk, R. Kunze, H. Schmidt, D. Schneider, and R. Moors, “Characterization of EUV induced carbon films using laser-generated surface acoustic waves,” Diamond Related Materials 18(5-8), 768–771 (2009). [CrossRef]
  19. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996). [CrossRef]
  20. G. E. Jellison and F. A. Modine, “Erratum: Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(14), 2137–2137 (1996). [CrossRef]
  21. J. Hong, A. Goullet, and G. Turban, “Ellipsometry and Raman study on hydrogenated amorphous carbon (a-C: H) films deposited in a dual ECR-r.f. plasma,” Thin Solid Films 352(1-2), 41–48 (1999). [CrossRef]
  22. S. Logothetidis, M. Gioti, S. Lousinian, and S. Fotiadou, “Haemocompatibility studies on carbon-based thin films by ellipsometry,” Thin Solid Films 482(1-2), 126–132 (2005). [CrossRef]
  23. J. Budai and Z. Toth, “Optical phase diagram of amorphous carbon films determined by spectroscopic ellipsometry,” Phys. Status Solidi, C 5(5), 1223–1226 (2008). [CrossRef]
  24. M. Gioti and S. Logothetidis, “Dielectric function, electronic properties and optical constants of amorphous carbon and carbon nitride films,” Diamond Related Materials 12(3-7), 957–962 (2003). [CrossRef]
  25. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15(2), 627–637 (1966). [CrossRef]
  26. C. Tanguy, “Optical dispersion by Wannier excitons,” Phys. Rev. Lett. 75(22), 4090–4093 (1995). [CrossRef] [PubMed]
  27. C. Tanguy, “Erratum: Optical dispersion by Wannier excitons (vol 75, pg 4090, 1995),” Phys. Rev. Lett. 76(4), 716–716 (1996). [CrossRef]
  28. C. Tanguy, “Analytical expression of the complex dielectric function for the Hulthen potential,” Phys. Rev. B 60(15), 10660–10663 (1999). [CrossRef]
  29. C. Tanguy, “Refractive index of direct bandgap semiconductors near the absorption threshold: Influence of excitonic effects,” IEEE J. Quantum Electron. 32(10), 1746–1751 (1996). [CrossRef]
  30. H. J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, and E. Spiller, “Characterization of multilayers by Fourier analysis of x-ray reflectivity,” J. Appl. Phys. 81(9), 6112–6119 (1997). [CrossRef]
  31. S. Frank, B. Burkhard, G. Brandt, R. Fliegauf, K. Roman, M. Bernd, D. Rost, S. Detlef, M. Veldkamp, J. Weser, U. Gerhard, L. Eric, E. Y. Andrey, O. Sebastian, and B. Fred, “New PTB beamlines for high-accuracy EUV reflectometry at BESSY II,” Proc. SPIE 4146, 72–82 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited