OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17070–17081

Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor

Derong Li, Xiaohua Lv, Pamela Bowlan, Rui Du, Shaoqun Zeng, and Qingming Luo  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 17070-17081 (2009)
http://dx.doi.org/10.1364/OE.17.017070


View Full Text Article

Enhanced HTML    Acrobat PDF (438 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

© 2009 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(320.0320) Ultrafast optics : Ultrafast optics
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 1, 2009
Revised Manuscript: September 4, 2009
Manuscript Accepted: September 5, 2009
Published: September 10, 2009

Citation
Derong Li, Xiaohua Lv, Pamela Bowlan, Rui Du, Shaoqun Zeng, and Qingming Luo, "Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor," Opt. Express 17, 17070-17081 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17070


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
  2. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984). [PubMed]
  3. J. Squier, F. Salin, G. Mourou, and D. Harter, “100-fs pulse generation and amplification in Ti:AI2O3,” Opt. Lett. 16(5), 324–326 (1991). [PubMed]
  4. C. L. Blanc, G. Grillon, J. P. Chambaret, A. Migus, and A. Antonetti, “Compact and efficient multipass Ti:sapphire system for femtosecond chirped-pulse amplification at the terawatt level,” Opt. Lett. 18(2), 140–142 (1993). [PubMed]
  5. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 um region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
  6. S. Zeng, D. Li, X. Lv, J. Liu, and Q. Luo, “Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser,” Opt. Lett. 32(9), 1180–1182 (2007). [PubMed]
  7. D. Li, X. Li, S. Zeng, and Q. Luo, “A generalized analysis of femtosecond laser pulse broadening after angular dispersion,” Opt. Express 16(1), 237–247 (2008). [PubMed]
  8. D. Li, S. Zeng, Q. Luo, P. Bowlan, V. Chauahan, and R. Trebino, “Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion,” Opt. Lett. 34(7), 962–964 (2009). [PubMed]
  9. S. Szatmari, G. Kuhnle, and P. Simon, “Pulse compression and traveling wave excitation scheme using a single dispersive element,” Appl. Opt. 29(36), 5372–5379 (1990). [PubMed]
  10. S. Szatmári, P. Simon, and M. Feuerhake, “Group velocity dispersion compensated propagation of short pulses in dispersive media,” Opt. Lett. 21(15), 1156–1158 (1996). [PubMed]
  11. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashort- pulse compressor,” Opt. Express 14(21), 10101–10108 (2006). [PubMed]
  12. M. Nakazawa, T. Nakashima, and H. Kubota, “Optical pulse compression using a TeO2 acousto-optical light deflector,” Opt. Lett. 13(2), 120–122 (1988). [PubMed]
  13. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006). [PubMed]
  14. Y. Kremer, J. F. Léger, R. Lapole, N. Honnorat, Y. Candela, S. Dieudonné, and L. Bourdieu, “A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view,” Opt. Express 16(14), 10066–10076 (2008). [PubMed]
  15. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
  16. O. E. Martinez, “Pulse distortions in tilted pulse schemes for ultrashort pulses,” Opt. Commun. 59(3), 229–232 (1986).
  17. Z. L. Horváth, Z. Benkö, A. P. Kovács, H. A. Hazim, and Z. Bor, “Propagation of femtosecond pulses through lenses, gratings, and slits,” Opt. Eng. 32(10), 2491–2500 (1993).
  18. K. Varjú, A. P. Kovács, K. Osvay, and G. Kurdi, “Angular dispersion of femtosecond pulses in a Gaussian beam,” Opt. Lett. 27(22), 2034–2036 (2002).
  19. J. C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  20. C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
  21. K. Osvay, A. P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, and M. Csatári, “Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors,” IEEE J. Sel. Top. Quantum Electron. 10(1), 213–220 (2004).
  22. K. Osvay, A. P. Kovacs, G. Kurdi, Z. Heiner, M. Divall, J. Klebniczki, and I. E. Ferincz, “Measurement of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser,” Opt. Commun. 248(1-3), 201–209 (2005).
  23. A. E. Siegman, Lasers, (University Science, Mill Valley, CA, 1986).
  24. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4-6), 599–604 (2004).
  25. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,” Opt. Express 11(1), 68–78 (2003). [PubMed]
  26. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004). [PubMed]
  27. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005). [PubMed]
  28. P. Gabolde, D. Lee, S. Akturk, and R. Trebino, “Describing first-order spatio-temporal distortions in ultrashort pulses using normalized parameters,” Opt. Express 15(1), 242–251 (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited