OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17088–17101

THz surface wave collapse on coated metal surfaces

Mufei Gong, Tae-In Jeon, and D. Grischkowsky  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 17088-17101 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Zenneck THz surface wave (Z-TSW) on metals is discussed with respect to its difficulty in generation and measurement. The spatial collapse of the extent of the Z-TSW evanescent field, upon the addition of a sub-wavelength dielectric layer on the metal surface, is explained by a simple model, in good agreement with exact analytical theory. Experimental measurements of the THz surface wave on an aluminum surface covered with a 12.5 µm thick dielectric layer have completely characterized the resultant single-mode dielectric layer THz surface wave (DL-TSW). The measured frequency-dependent exponential fall-off of the evanescent wave from the surface agrees well with theory. The DL-TSW frequency-dependent absorption coefficient, phase velocity, group velocity and group velocity dispersion have been obtained. These guided-wave parameters compare favorably with other guided wave structures.

© 2009 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optics at Surfaces

Original Manuscript: August 3, 2009
Revised Manuscript: September 2, 2009
Manuscript Accepted: September 3, 2009
Published: September 10, 2009

Mufei Gong, Tae-In Jeon, and D. Grischkowsky, "THz surface wave collapse on coated metal surfaces," Opt. Express 17, 17088-17101 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sommerfeld, “ Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes,” Annalen der Physik und Chemie 303(2), 233–290 (1899). [CrossRef]
  2. J. Zenneck, “ Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Annalen der Physik 328(10), 846–866 (1907). [CrossRef]
  3. A. Sommerfeld, Electrodynamics (Academic, New York, 1952).
  4. H. M. Barlow and A. L. Cullen, “Surface Waves,” Proc. IEE 100, 329–347 (1953).
  5. G. N. Zhizhin, M. A. Moskalova, E. V. M. Shomina, and V. A. Yakolev, “Surface electromagnetic wave propagation on metal surfaces,” in Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces, V.M. Agranovich and D. L. Mills, eds. (North-Holland, Amsterdam1982), pp. 93–144. [PubMed]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  7. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44(11), 5855–5872 (1991). [CrossRef]
  8. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88(6), 061113 (2006). [CrossRef]
  9. D. L. Begley, R. W. Alexander, C. A. Ward, R. Miller, and R. J. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81(1), 245–251 (1979). [CrossRef]
  10. E. S. Koteles and W. H. McNeill, “Far infrared surface plasmon propagation,” Intl. J. Infared Mil. Wav. 2(2), 361–371 (1981). [CrossRef]
  11. Z. Schlesinger and A. J. Sievers, “IR surface-plasmon attenuation coefficients for Ge-coated Ag and Au metals,” Phys. Rev. B 26(12), 6444–6454 (1982). [CrossRef]
  12. K. W. Steijn, R. J. Seymour, and G. I. Stegeman, “Attenuation of far-infrared surface plasmons on overcoated metal,” Appl. Phys. Lett. 49(18), 1151–1153 (1986). [CrossRef]
  13. D. L. Mills and A. A. Maradudin, “Surface corrugation and surface-polariton binding in the infrared frequency range,” Phys. Rev. B 39(3), 1569–1574 (1989). [CrossRef]
  14. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  15. M. Klopfleisch and U. Schellenberger, “Experimental determination of the attenuation coefficient of surface electromagnetic waves,” J. Appl. Phys. 70(2), 930–934 (1991). [CrossRef]
  16. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolívar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69(15), 155427 (2004). [CrossRef]
  17. J. O’Hara, R. Averitt, and A. Taylor, “Prism coupling to terahertz surface plasmon polaritons,” Opt. Express 13(16), 6117–6126 (2005). [CrossRef] [PubMed]
  18. L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surfaces,” Surf. Sci. 600(20), 4771–4776 (2006). [CrossRef]
  19. M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface Plasmon THz waves on gratings,” C. R. Phys. 9(2), 232–247 (2008). [CrossRef]
  20. J. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86(6), 061109 (2005). [CrossRef]
  21. J. D. Kraus, Antennas- Second Edition, (Mc Graw-Hill, New York, 1988).
  22. R.E. Collin, Field-Theory of Guided Waves- Second Edition (IEEE Press, Piscataway, N.J).
  23. H. M. Barlow and J. Brown, Radio surface waves (Oxford, Clarendon Press, 1962).
  24. J. C. G. Lesurf, “Beam coupling, lenses and mirrors,” in Millimetre-wave Optics, Devices and Systems (Adam Hilger, Bristol and New York, 1990), pp. 11–28.
  25. G. I. Stegeman and R. J. Seymour, “Surface plasmon attenuation by thin film overlayers in the far infrared,” Solid State Commun. 44(9), 1357–1358 (1982). [CrossRef]
  26. S. S. Attwood, “Surface-Wave Propagation over a coated plane conductor,” J. Appl. Phys. 22(4), 504–509 (1951). [CrossRef]
  27. Y. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31(10), 1534–1536 (2006). [CrossRef] [PubMed]
  28. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  29. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).
  30. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” Appl. Phys. Lett. 88, 4449–4451 (2000).
  31. M. Gong, Study of THz Surface Waves (TSW) on Bare and Coated Metal Surfaces (Ph. D dissertation of Oklahoma State University, Stillwater, 2009).
  32. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005). [CrossRef]
  33. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001). [CrossRef]
  34. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. Series in Microwave and Optical Engineering (New York, John Wiley & Sons Inc.2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited