OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17118–17129

Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde  »View Author Affiliations

Optics Express, Vol. 17, Issue 19, pp. 17118-17129 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Linear and non-linear thermo-optical dynamical regimes were investigated in a photonic crystal cavity. First, we have measured the thermal relaxation time in an InP-based nano-cavity with quantum dots in the presence of optical pumping. The experimental method presented here allows one to obtain the dynamics of temperature in a nanocavity. It is based on reflectivity measurements of a cw probe beam coupled through an adiabatically tapered fiber. Characteristic times of 1.0±0.2 µs and 0.9±0.2 µs for the heating and the cooling processes were obtained. Finally, thermal dynamics were also investigated in a thermo-optical bistable regime. Switch-on/off times of 2 µs and 4 µs respectively were measured, which could be explained in terms of a simple non-linear dynamical representation.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Photonic Crystals

Original Manuscript: May 21, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 10, 2009
Published: September 11, 2009

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, "Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity," Opt. Express 17, 17118-17129 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896 (2007);S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip and I. Abram, "Indistinguishable single photons from a single quantum dot in two-dimensional Photonic Crystal cavity," Appl. Phys. Lett. 87, 163107 (2005). [CrossRef] [PubMed]
  2. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458 (2007). [CrossRef] [PubMed]
  3. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, J. A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, J.-M. Fedeli, "All-optical bistable band-edge Bloch modes in a two-dimensional photonic cristal," Appl. Phys. Lett. 88, 231107 (2006). [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  5. R. Braive, S. Barbay, I. Sagnes, A. Miard, I. Robert-Philip, and A. Beveratos, "Transient chirp in high-speed photonic-crystal quantum-dot lasers with controlled spontaneous emission," Opt. Lett. 34, 554 (2009). [CrossRef] [PubMed]
  6. H. Altug, D. Englund, and J. Vuckovic, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484 (2006). [CrossRef]
  7. Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005). [CrossRef] [PubMed]
  8. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006). [CrossRef] [PubMed]
  9. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12, 4742 (2004). [CrossRef] [PubMed]
  10. A. M. Yacomotti, P. Monnier, F. Raineri, B. Ben Bakir, C. Seassal, R. Raj, and J. A. Levenson, "Fast Thermo-Optical Excitability in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 97, 143904 (2006). [CrossRef] [PubMed]
  11. M. T. Tinker and J-B. Lee, "Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency," Optics Express 18, 7174-7187 (2005). [CrossRef]
  12. G. Tessier, G. Jerosolimski, S. Hole, D. Fournier, and C. Filloy, "Measuring and predicting the thermoreflectance sensitivity as a function of wavelength on encapsulated materials," Rev. Sci. Instrum. 74 (1), 495 (2003). [CrossRef]
  13. L. Pottier, "Micrometer scale visualization of thermal waves by photoreflectance microscopy," Appl. Phys. Lett. 64, 1618-1619 (1994). [CrossRef]
  14. Y. Akahane, T. Asano, B.-S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  15. A. Michon, R. Hostein, G. Patriarche, N. Gogneau, G. Beaudoin, A. Beveratos, I. Robert?Philip, S. Laurent, S. Sauvage, P. Boucaud, I. Sagnes, "Metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots for 1.55 ?m applications: Growth, structural, and optical properties," J. Appl. Phys. 104, 043504 (2008). [CrossRef]
  16. I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005) [CrossRef]
  17. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, (2004) [CrossRef]
  18. C. Grillet, C. Smith, D. Freeman, S. Madden, B. L-Davies, E. C. Magi, D. J. Moss and B. J. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070 (2006). [CrossRef] [PubMed]
  19. See for example B. Maes, P. Bienstman, and R. Baets, "Switching in coupled nonlinear photonic-crystal resonators," J. Opt. Soc. Am. B 22, 1778 (2005). [CrossRef]
  20. In Section 5 we study nonlinear thermo-optical effects which are shown to appear for a signal power greater than ~1 mW (see transmission curves as a function of input power in Fig. 4c).
  21. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  22. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). [CrossRef] [PubMed]
  23. Convection within the air gap can be neglected since the Rayleigh number for an air gap of thickness ? between two rigid walls, for a few degrees of temperature increment, is Ra?=g ?T ?3/a?T~10-10, whereas the onset for convection is Ra?~2 103. See for example J. Taine and J. P. Petit, Heat transfert (Prentice-Hall, 1993).
  24. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, "Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 µm," Appl. Phys. Lett. 77, 1614 (2000). [CrossRef]
  25. F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj and A. Levenson, "Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes," Appl. Phys. Lett. 86, 011116 (2005). [CrossRef]
  26. The thermal relaxation time for a PhC membrane on oxide can be easily calculated under the hypothesis of 1D vertical heat flow through the oxide layer to the substrate. For instance, for a 250 nm-thick Si membrane (?Si=1.5 W/cm K, ?Si=0.9 cm2/s) in contact with a 1 µm-thick SiO2 layer (?SiO2=0.013 W/cm K, ?SiO2=0.006 cm2/s), a numerical simulation of the 1D heat equation gives tth=950 ns.
  27. A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, and D. M. Whittaker, "Mode structure of the L3 photonic crystal cavity," Appl. Phys. Lett. 90, 241117 (2007). [CrossRef]
  28. We use the estimated ?th from the experimental results, ?th~110 ns (see Section 6.1). This is an approximation since ?th depends on the geometry of the hot spot which, in the resonant case, is given by the cavity volume, different from the pumped region given by the surface illumination.
  29. C. Sauvan, P. Lalanne and J.P. Hugonin, "Slow-wave effect and mode-profile matching in Photonic Crystal microcavities," Phys. Rev. B 71, 165118 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited