OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 598–602

Polarization dependent devices realized by using asymmetrical hole array on a metallic film

Shaoyun Yin, Chongxi Zhou, Xiaochun Dong, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 598-602 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is brought forward for realizing polarization dependent devices by employing sub-wavelength asymmetrical hole array on a metallic film. Based on the fundamental mode approximation, the phase retardations of rectangular hole for two orthogonal polarization incident waves are analyzed and calculated. Using rectangular hole array, a bifocal-polarization lens for the infrared radiation with 10.6μm wavelength is designed. Its focal lengths for x- and y- polarized incident wave are examined by the finite difference time domain (FDTD) method and the Rayleigh-Sommerfeld diffraction integrals and the obtained results agree well with the designed values.

© 2009 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(260.3060) Physical optics : Infrared
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization
(310.0310) Thin films : Thin films

ToC Category:
Physical Optics

Original Manuscript: November 11, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 20, 2008
Published: January 7, 2009

Shaoyun Yin, Congxi Zhou, Xiaochun Dong, and Chunlei Du, "Polarization dependent devices realized by using asymmetrical hole array on a metallic film," Opt. Express 17, 598-602 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Cremer, W. de Jong, and K. Schutte, "Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines," Opt. Eng. 41, 1021-1032 (2002). [CrossRef]
  2. B. Hao and J. Leger, "Polarization beam shaping," App. Opt. 46, 8211-8217 (2007). [CrossRef]
  3. G. Martinez-Ponce, T. Petrova, N. Tomova, V. Dragostnova, T. Todorov, and L. Nikolova, "Bifocal-polarization holographic lens," Opt. Lett. 29, 1001-1003 (2004). [CrossRef] [PubMed]
  4. K. Takano, M. Saito, and M. Miyagi, "Cube polarizers by the use of metal particles in anodic alumina films," App. Opt. 33, 3507-3512 (1994). [CrossRef]
  5. G. R. Bird and M. ParrishJr., "The wire grid as a near-infrared polarizer," J. Opt. Soc. Am. 50, 886-891 (1960). [CrossRef]
  6. Y. Chen, C. Zhou, X. Luo, and C. Du, "Structured lens formed by a 2D square hole array in a metallic film," Opt. Lett. 33, 753-755 (2008). [CrossRef] [PubMed]
  7. S. Yin, C. Zhou, X. Luo, and C. Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express. 16, 2578-2583 (2008). [CrossRef] [PubMed]
  8. J. M. Brok and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express. 14, 2552-2572 (2006). [CrossRef] [PubMed]
  9. L. Martin-Moreno and F. J. Garcia-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express. 12, 3619-3628 (2004). [CrossRef]
  10. Z. Wang, C. T. Chan, W. Zhang, N. Ming, and P. Sheng, "Three-dimensional self-assembly of metal nanoparticles: possible photonic crystal with a complete gap below the plasma frequency," Phys. Rev. B 64, 113108 (2001). [CrossRef]
  11. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053903 (2007). [CrossRef] [PubMed]
  12. H. M. Barlow and A. L. Cullen, "Surface waves," Proc. IEE 100, 329-347 (1953).
  13. R. Collin, Field Theory of Guided Waves (Wiley, New York, ed. 2, 1990). [CrossRef]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005). [CrossRef]
  15. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef]
  16. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado and L. Martin-Moreno, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004). [CrossRef] [PubMed]
  17. F. J. Garcia de Abajo, J. J. Saenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express. 14, 7-18 (2006). [CrossRef] [PubMed]
  18. H. Cao and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express. 12, 1004-1010 (2004). [CrossRef] [PubMed]
  19. F. J. Garcia De Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005). [CrossRef]
  20. J. R. Suckling et al, "Finite conductance governs the resonance transmission of thin metal slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147201 (2004). [CrossRef]
  21. D. W. Lynch and W. R. Hunter, Handbook of Optical constants of solids (Academic Press, Palik, E. D., ed., New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited