OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 666–675

Loss mechanisms in mid-infrared extraordinary optical transmission gratings

T. Ribaudo, B. Passmore, K. Freitas, E.A. Shaner, J.G. Cederberg, and D. Wasserman  »View Author Affiliations

Optics Express, Vol. 17, Issue 2, pp. 666-675 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of periodic arrays of subwavelength apertures in metal films on GaAs substrates are studied. Specifically, geometric and material losses for these plasmonic structures are characterized using angular dependent transmission, normal incidence reflection, and angular dependent diffraction experiments, in addition to a crossed-polarizer transmission experiment. The optical properties of the samples as a function of engineered material losses are studied. Using this comprehensive approach to the characterization of the plasmonic structures, we are able to identify and isolate specific loss mechanisms, as well as identify the effect of free carriers on the optical properties of the structures.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: November 17, 2008
Revised Manuscript: December 31, 2008
Manuscript Accepted: December 31, 2008
Published: January 7, 2009

T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss mechanisms in mid-infrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Electrochemistry Part I. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode," J. Electro. Anal. Chem. 841-20 (1977). [CrossRef]
  2. C. Genet and T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  3. J. T. Kim, J. J. Ju, S. Park, M. Kim, S. K. Park, and M. Lee, "Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides," Opt. Express 16, 13133-13138 (2008). [CrossRef] [PubMed]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  5. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano. Lett. 7, 1929-1934 (2007). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  7. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  8. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, "Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers," J. Phys. Chem. B 107, 11871-11879 (2003). [CrossRef]
  9. H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452, 728-731 (2008). [CrossRef] [PubMed]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, "Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits," Phys. Rev. B. 77, 115411 (2008). [CrossRef]
  11. D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 16, 9222-9238 (2008). [CrossRef] [PubMed]
  12. J. V. Coe, S. M. Williams, S. M. Teeters-Kennedy, K. R. Rodriguez, and S. Shah, "Scaffolding for Nanotechnology: Extraordinary IR Transmission of Metal Microarrays for Stacked Sensors and Surface Spectroscopy," Nanotechnology 15, S495-S503 (2004). [CrossRef]
  13. A. Kastalsky, T. Duffield, S. J. Allen, and J. Harbison, "Photovoltaic detection of infrared light in a GaAs/AlGaAs superlattice," Appl. Phys. Lett. 52, 1320-1322 (1988). [CrossRef]
  14. D. Pan and E. Towe, "Normal incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors," Appl. Phys. Lett. 73, 1937-3939 (1998) [CrossRef]
  15. K. W. Berryman, S. A. Lyon, M. Segev, "Electronic structure and optical behavior of self-assembled InAs quantum dots," J. Vac. Sci. Technol. B. 15, 1045-1050 (1997). [CrossRef]
  16. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  17. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nature Photonics 2, 564-570 (2008). [CrossRef]
  18. D. Wasserman and S. A. Lyon, "Midinfrared luminescence from InAs quantum dots in unipolar devices," Appl. Phys. Lett. 81, 2848-2850 (2002). [CrossRef]
  19. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, "Active control of surface plasmon-polariton waves," J. Opt. A: Pure Appl. Opt. 7, S8d-S89 (2005). [CrossRef]
  20. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. HaglundJr., "Modulated optical transmissionod subwavelength hole arryas in metal-VO2 films," Appl. Phys. Lett. 88, 133115 (2006). [CrossRef]
  21. E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007). [CrossRef]
  22. D. Wasserman, E. A. Shaner, and J. G. Cederberg, "Mid-Infrared doping tunable extraordinary transmission from sub-wavelength gratings," Appl. Phys. Lett. 90, 191102 (2007). [CrossRef]
  23. M. Sarraazin, J. Vigneron, and J. Vigoureux, "Role of wood anomalies in optical properties of thin metallic films wth a bidimensional array of subwavelength holes," Phys. Rev. B. 67085415 (2003). [CrossRef]
  24. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24,256-258 (1999). [CrossRef]
  25. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. Pelouard, "Angle. Resolved transmission measurements through anisotropic two-dimensional Plasmonic crystals," Opt. Lett. 33, 165-167 (2008). [CrossRef] [PubMed]
  26. R. W. Wood, Proc. Phil. Mag. 4, 396-408 (1902).
  27. L. Pang, K. A. Tetz, and Y. Fainman, "Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array," Appl. Phys. Lett. 90, 111103 (2007). [CrossRef]
  28. S. Chang, S. Gray, and G. Schatz "Surface plasmon generation and light transmission by isolated nanohole and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  29. H. F. Ghaemi, T. Thio, D. E. Grupp T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission thorugh subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited