OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 2 — Jan. 19, 2009
  • pp: 747–760

Influence of imperfections on the photonic insulating and guiding properties of finite Si-inverted opal crystals

Andrei V. Lavrinenko, Wendel Wohlleben, and Reinhold J. Leyrer  »View Author Affiliations


Optics Express, Vol. 17, Issue 2, pp. 747-760 (2009)
http://dx.doi.org/10.1364/OE.17.000747


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The stability of the photonic properties of Si-infiltrated opals for fabrication disorder is tested with following models of applied imperfections: deviations in radii of spheres, deviations in spheres positions and both of them. The deviations are assumed to be distributed accordingly to the normal law and to the skewed distribution experimentally observed in the process of production of polymer self-assembled crystals. The criteria for the photonic crystals tolerances are evaluated versus the quality of photonic insulation provided by films or bulk spheres of finite thicknesses. In addition the stability of the photonic crystal waveguides in inverted opals is tested versus the imperfections strength.

© 2009 Optical Society of America

OCIS Codes
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: November 20, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 13, 2008
Published: January 8, 2009

Citation
Andrei V. Lavrinenko, Wendel Wohlleben, and Reinhold J. Leyrer, "Influence of imperfections on the insulating and guiding properties of finite Si-inverted opal crystals," Opt. Express 17, 747-760 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Rinne, F. Garcia-Santamaria, and P. V. Braun, "Embedded cavities and waveguides in three-dimensional silicon photonic crystals," Nat. Photonics 3, 2222-2226 (2008).
  2. Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda, "Inverse silica opal photonic crystals for optical sensing applications," Opt. Express 15, 12979-12988 (2007). [CrossRef] [PubMed]
  3. M. A. Kaliteevski, J. Manzaranes Martinez, D. Cassagne, and J. P. Albert, "Disorder-induced modification of the transmission of light in a two-dimensional photonic crystal," Phys. Rev. B 66, 113101 (2002) [CrossRef]
  4. M. L. Povinelli, S. G. Johnson, E. Lidorkis, and J. D. Joannopoulos, "Effect of a photonic band gap on scattering from waveguide disorder," Appl. Phys. Lett. 84, 3639-3641 (2004). [CrossRef]
  5. D. Gerace and L. C. Andreani, "Disorder-induced losses in photonic crystal waveguides with line defects," Opt. Lett. 29, 1897-1899 (2004). [CrossRef] [PubMed]
  6. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorder," Opt. Lett. 29, 2782-2784 (2004). [CrossRef] [PubMed]
  7. M. A. Kaliteevski, D. M. Beggs, S. Brand, R. A. Abram, and V. V. Nikolaev, "Stability of the photonic band gaps in the presence of disorder," Phys. Rev. B 73, 033106 (2006). [CrossRef]
  8. R. Ferrini, D. Leuenberger, R. Houdre, H. Benisty, M. Kamp, and A. Forchel, "Disorder-induced losses in planar photonic crystals," Opt. Lett. 31, 1426-1428 (2006). [CrossRef] [PubMed]
  9. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F Limonov, "Manifestation of intrinsic defets in optical properties of self-organized opal photonic crystals," Phys. Rev. E 61, 5784-5793 (2000). [CrossRef]
  10. Z.-Y. Li and Z.-Q. Zhang, "Fragility of photonic band gaps in inverse-opal photonic crystals," Phys. Rev. B 62, 1516-1519 (2000). [CrossRef]
  11. V. Yannopapas, N. Stefanou, and A. Modinos, "Effects of stacking faults on the optical properties of inverted opals," Phys. Rev. Lett. 86, 4811-4814 (2001). [CrossRef] [PubMed]
  12. V. N. Astratov, A. D. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002). [CrossRef]
  13. F. Galisteo Lopez and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 (2002). [CrossRef]
  14. A. F. Koenderink and W. L. Vos, "Light exiting from real photonic band gap crystals is diffuse and strongly directional," Phys. Rev. Lett. 91, 213902 (2003). [CrossRef] [PubMed]
  15. V. Yannopapas, A. Modinos, and N. Stefanou, "Anderson localization of light in inverted opals," Phys. Rev. B 68, 193205 (2003). [CrossRef]
  16. M. Allard and E. H. Sargent, "Impact of polydispersity on light propagation in colloidal photonic crystals," Appl. Phys. Lett. 85, 5887-5889 (2004). [CrossRef]
  17. A. F. Koenderink, A. Lagendijk, and W. L. Vos, "Optical extinction due to intrinsic structural variations of photonic crystals," Phys. Rev. B 72, 153102 (2005). [CrossRef]
  18. E. Palacios-Lidon, B. H. Juarez, E. Castillo-Martinez, and C. Lopez, "Optical and morphological study of disorder in opals," J. Appl. Phys. 97, 063502 (2005). [CrossRef]
  19. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, "Effect of disorder on the optical properties of colloidal crystals," Phys. Rev. E 71, 016615 (2005). [CrossRef]
  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).
  21. A. Blanco and C. López, "Silicon onion-layer nanostructures arranged in three dimensions," Adv. Mater. 18, 1593-1597 (2006). [CrossRef]
  22. W. Mächtle and L. Börger, Analytical Ultracentrifugation of Polymers and Nanoparticles (Springer, 2006).
  23. H. Cölfen, Analytical Ultracentrifugation of Nanoparticles, in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, 2004), p. 67-88.
  24. C. Kittel, Introduction to Solid State Physics (Wiley & Sons, New York, 1971).
  25. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpoth, M. Kristensen, T. Niemi, and H. M. H. Chong, "Comprehensive FDTD modeling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004). [CrossRef] [PubMed]
  26. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, "Spontaneous emission of organic molecules embedded in a photonic crystal," Phys. Rev. Lett. 81, 77-80 (1998). [CrossRef]
  27. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896 (1998). [CrossRef]
  28. E. Palacios-Lidon, A. Blanco, M. Ibisate, F. Mesequer, J. C. Lopez, and J. Sanchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002). [CrossRef]
  29. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999). [CrossRef]
  30. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 075313 (2001). [CrossRef]
  31. V. Yannopapas, A. Modinos, and N. Stefanou, "Waveguides of defect chains in photonic crystals," Phys. Rev. B 65, 235201 (2002). [CrossRef]
  32. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett. 84, 4605-4607 (2004). [CrossRef]
  33. A. Chutinan and S. John, "Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations," Phys. Rev. E 71, 026605 (2005). [CrossRef]
  34. Y. Jin, C. A. Leatherdale, and D. J. Norris, "Tailoring air defects in self-assembled photonic bandgap crystals," Adv. Mater. 17, 1908-1911 (2005). [CrossRef]
  35. V. Lousse, J. Shin, and S. Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett. 89, 161113 (2006). [CrossRef]
  36. V. Lousse and S. Fan, "Waveguides in inverted opal photonic crystals," Opt. Express 14, 866-78 (2006). [CrossRef] [PubMed]
  37. Y. A. Vlasov, X. Bo, J. C. Sturm, and D. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  38. K-C. Kwan, X. Zhang, Z.-Q. Zhang, and C. T. Chan, "Effect due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 82, 4414-4416 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited