OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17471–17482

Plasmonic multi-mode interference couplers

Yu-Ju Tsai, Aloyse Degiron, Nan M. Jokerst, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17471-17482 (2009)
http://dx.doi.org/10.1364/OE.17.017471


View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic multi-mode interference (MMI) couplers have been investigated both numerically and experimentally at the telecommunication wavelength of 1.55 μm. In this study, the couplers are implemented using thin Au stripes that support long-range surface plasmons. We first detail the operation principle of these devices with numerical simulations and show that useful effects can be obtained despite the high material losses inherent to metallic structures. A series of MMI couplers is subsequently fabricated and experimentally characterized, showing a quantitative agreement with our numerical predictions. We conclude by discussing some of the possible applications for these structures.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 10, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: August 24, 2009
Published: September 15, 2009

Citation
Yu-Ju Tsai, Aloyse Degiron, Nan M. Jokerst, and David R. Smith, "Plasmonic multi-mode interference couplers," Opt. Express 17, 17471-17482 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  2. C. J. Powell and J. B. Swan, “Origin of the Characteristic Electron Energy Losses in Magnesium,” Phys. Rev. 116(1), 81–83 (1959). [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  5. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  6. D. J. O’Shannessy, M. Brigham-Burke, and K. Peck, “Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector,” Anal. Biochem. 205(1), 132–136 (1992). [CrossRef] [PubMed]
  7. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sens. Actuators B Chem. 29(1-3), 261–267 (1995). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  9. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  10. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006). [CrossRef]
  11. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14(26), 13030–13042 (2006). [CrossRef] [PubMed]
  12. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007). [CrossRef] [PubMed]
  13. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Opt. Express 16(23), 19001–19017 (2008). [CrossRef]
  14. G. J. Kovacs, “Optical excitation of surface plasma waves in an indium film bounded by dielectric layers,” Thin Solid Films 60(1), 33–44 (1979). [CrossRef]
  15. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  16. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999). [CrossRef]
  17. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  18. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005). [CrossRef] [PubMed]
  19. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  20. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90 ° bends,” Opt. Lett. 32(16), 2354–2356 (2007). [CrossRef] [PubMed]
  21. A. Degiron, S. Cho, C. Harrison, N. Jokerst, C. Dellagiacoma, O. Martin, and D. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008). [CrossRef]
  22. A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11(1), 015002 (2009). [CrossRef]
  23. P. Berini, R. Charbonneau, S. Jette-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 101(11), 113114 (2007). [CrossRef]
  24. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003). [CrossRef]
  25. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  26. S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007). [CrossRef]
  27. L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  28. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63(4), 416–419 (1973). [CrossRef]
  29. R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Opt. Commun. 13(3), 259–264 (1975). [CrossRef]
  30. J. Z. Huang, R. Scarmozzino, and R. M. Osgood, “A new design approach to large input/output-number multimode interference couplers and its application to low-crosstalk WDM routers,” IEEE Photon. Technol. Lett. 10(9), 1292–1294 (1998). [CrossRef]
  31. M. R. Paiam and R. I. Macdonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt. 36(21), 5097–5108 (1997). [CrossRef] [PubMed]
  32. A. Cleary, S. Garcia-Blanco, A. Glidle, J. S. Aitchison, P. Laybourn, and J. M. Cooper, “An integrated fluorescence array as a platform for lab-on-a-chip technology using multimode interference splitters,” IEEE Sens. J. 5(6), 1315–1320 (2005). [CrossRef]
  33. T. Mazingue, R. K. Kribich, P. Etienne, and Y. Moreau, “Simulations of refractive index variation in a multimode interference coupler: Application to gas sensing,” Opt. Commun. 278(2), 312–316 (2007). [CrossRef]
  34. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22(12), 2842–2846 (2004). [CrossRef]
  35. D. Modotto, M. Conforti, A. Locatelli, and C. De Angelis, “Imaging properties of multimode photonic crystal waveguides and waveguide arrays,” J. Lightwave Technol. 25(1), 402–409 (2007). [CrossRef]
  36. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
  38. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, London, 1983).
  39. R. M. Jenkins, R. W. J. Devereux, and J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett. 17(14), 991–993 (1992). [CrossRef] [PubMed]
  40. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N×N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994). [CrossRef] [PubMed]
  41. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005). [CrossRef]
  42. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007). [CrossRef] [PubMed]
  43. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2(3), 97–106 (2007). [CrossRef]
  44. R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94(9), 091114 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited