OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17590–17595

Adaptive liquid lens actuated by photo-polymer

Su Xu, Hongwen Ren, Yeong-Jyh Lin, M. G. Jim Moharam, Shin-Tson Wu, and Nelson Tabiryan  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17590-17595 (2009)
http://dx.doi.org/10.1364/OE.17.017590


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An adaptive liquid lens actuated by a photo-polymer is demonstrated. The lens cell consists of a top glass substrate and a bottom plastic slab with two holes: reservoir hole and lens hole, which are sealed with elastic membranes. A photo-sensitive polymer is attached to the membrane of the reservoir hole. Under blue light irradiation, the polymer is bent which exerts a pressure to regulate the curvature of the membrane on the lens hole and then change the focal length of the plano-convex lens. The focal length is tunable from infinity to 21.2 mm in seconds. Non-mechanical driving, easy integration with other optical components and compact system are the key features of this lens.

© 2009 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(160.5470) Materials : Polymers
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Adaptive Optics

History
Original Manuscript: August 13, 2009
Manuscript Accepted: September 9, 2009
Published: September 16, 2009

Citation
Su Xu, Hongwen Ren, Yeong-Jyh Lin, M. G. Jim Moharam, Shin-Tson Wu, and Nelson Tabiryan, "Adaptive liquid lens actuated by photo-polymer," Opt. Express 17, 17590-17595 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  2. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004). [CrossRef] [PubMed]
  3. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  4. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102 (2005). [CrossRef]
  5. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009). [CrossRef] [PubMed]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]
  7. M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996). [CrossRef]
  8. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007). [CrossRef] [PubMed]
  9. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009). [CrossRef] [PubMed]
  10. S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009). [CrossRef]
  11. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009). [CrossRef] [PubMed]
  12. C. S. Liu and P. D. Lin, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express 17(12), 9754–9763 (2009). [CrossRef] [PubMed]
  13. H. M. Son, M. Y. Kim, and Y. J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express 17(16), 14339–14350 (2009). [CrossRef] [PubMed]
  14. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature 404(6778), 588–590 (2000). [CrossRef] [PubMed]
  15. X. Zeng and H. Jiang, “Tunable liquid microlens actuated by infrared light-responsive hydrogel,” Appl. Phys. Lett. 93(15), 151101 (2008). [CrossRef]
  16. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, “A new opto-mechanical effect in solids,” Phys. Rev. Lett. 87(1), 015501 (2001). [CrossRef] [PubMed]
  17. Y. Yu, M. Nakano, and T. Ikeda, “Photomechanics: directed bending of a polymer film by light,” Nature 425(6954), 145 (2003). [CrossRef] [PubMed]
  18. S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Azobenzene liquid crystal polymer-based membrane and cantilever optical systems,” Opt. Express 17(18), 15736–15746 (2009). [CrossRef] [PubMed]
  19. N. Tabiryan, S. Serak, X. M. Dai, and T. Bunning, “Polymer film with optically controlled form and actuation,” Opt. Express 13(19), 7442–7448 (2005). [CrossRef] [PubMed]
  20. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971). [CrossRef]
  21. M. Liu and Q. Chen, ““Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-micro-electromechanical systems-related applications,” J. Micro/Nanolith,” J. Micro/Nanolith. MEMS MOEMS 6, 012008 (2007). [CrossRef]
  22. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1511 KB)     
» Media 2: MOV (1702 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited