OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17723–17733

Terahertz quasi time domain spectroscopy

Maik Scheller and Martin Koch  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17723-17733 (2009)
http://dx.doi.org/10.1364/OE.17.017723


View Full Text Article

Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown theoretically and experimentally that for the specific case of an equidistant frequency spacing of semiconductor laser modes, signals similar to terahertz (THz) time domain spectroscopy (TDS) can be detected in a standard photomixer setup. This quasi TDS system approach enables for both, time and frequency domain data processing. Measurements with a THz system which is based on a low cost multimode laser diode are presented. The system exhibits a bandwidth of 600 GHz and can be applied to the classical THz TDS application scenarios.

© 2009 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(150.3045) Machine vision : Industrial optical metrology
(300.6495) Spectroscopy : Spectroscopy, teraherz
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Spectroscopy

History
Original Manuscript: August 14, 2009
Revised Manuscript: September 14, 2009
Manuscript Accepted: September 14, 2009
Published: September 18, 2009

Citation
Maik Scheller and Martin Koch, "Terahertz quasi time domain spectroscopy," Opt. Express 17, 17723-17733 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17723


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, and N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85(22), 5194–5196 (2004). [CrossRef]
  2. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [CrossRef]
  3. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008). [CrossRef]
  4. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008). [CrossRef]
  5. K. Fukunaga, Y. Ogawa, S. Hayashi, and I. Hosako, “Terahertz spectroscopy for art conservation,” IEICE Electronics Express 4(8), 258–263 (2007). [CrossRef]
  6. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008). [CrossRef]
  7. A. J. L. Adam, P. C. M. Planken, S. Meloni, and J. Dik, “TeraHertz imaging of hidden paint layers on canvas,” Opt. Express 17(5), 3407–3416 (2009). [CrossRef]
  8. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–280 (2005). [CrossRef]
  9. H. B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006). [CrossRef]
  10. S. Hunsche, D. M. Mittelman, M. Koch, and M. C. Nuss, “New Dimensions in T-Ray Imaging,” IEICE Trans. Electron. 81-C(2), 269–276 (1998).
  11. H.-T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003). [CrossRef]
  12. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008). [CrossRef]
  13. M. A. Seo, A. J. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express 16(25), 20484–20489 (2008). [CrossRef]
  14. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  15. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007). [CrossRef]
  16. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559 (1997). [CrossRef]
  17. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003–3005 (2002). [CrossRef]
  18. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid-State Electron. 48(10-11), 2041–2045 (2004). [CrossRef]
  19. G. Mouret, S. Matton, R. Bocquet, F. Hindle, E. Peytavit, J. F. Lampin, and D. Lippens, “Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz,” Appl. Phys. B 79(6), 725–729 (2004). [CrossRef]
  20. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007). [CrossRef]
  21. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47(16), 3023–3026 (2008). [CrossRef]
  22. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79(4), 044702 (2008). [CrossRef]
  23. O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna,” Appl. Phys. Lett. 75(24), 3772–3774 (1999). [CrossRef]
  24. I. S. Gregory, W. R. Tribe, M. J. Evans, T. D. Drysdale, D. R. S. Cumming, and M. Missous, “Multi-channel homodyne detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 87(3), 034106 (2005). [CrossRef]
  25. K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode,” Appl. Phys. Lett. 90(16), 161127 (2007). [CrossRef]
  26. German patent application, Nr. 10 2009 036 111.1.
  27. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998). [CrossRef]
  28. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993). [CrossRef]
  29. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995). [CrossRef]
  30. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Europ. Opt. Soc. Rap. Public. 09001, 4 (2009).
  31. L. Duvillaret, F. Garet, and J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999). [CrossRef]
  32. T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18(7), 1562–1571 (2001). [CrossRef]
  33. M. Scheller and M. Koch, “Fast and accurate thickness determination of unknown materials using terahertz time domain spectroscopy,” J. of Infrared, Millimeter, and Terahertz Waves 30(7), 762–769 (2009). [CrossRef]
  34. M. Scheller, C. Jansen, and M. Koch, “Analyzing Sub-100µm Samples with Transmission Terahertz Time Domain Spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009). [CrossRef]
  35. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss,“T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2(3), 679–692 (1996). [CrossRef]
  36. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of leaf water status by means of permittivity at terahertz frequencies,” J. Biol. Phys. 35(3), 255–264 (2009). [CrossRef]
  37. N. C. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005). [CrossRef]
  38. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45(12), 2766–2772 (2006). [CrossRef]
  39. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006). [CrossRef]
  40. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited