OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 20 — Sep. 28, 2009
  • pp: 17996–18002

Pressure measurements through image analysis

Sergio Calixto, Francisco J. Sánchez-Marin, and M. E. Sánchez-Morales  »View Author Affiliations


Optics Express, Vol. 17, Issue 20, pp. 17996-18002 (2009)
http://dx.doi.org/10.1364/OE.17.017996


View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we propose a new optical method, to our knowledge, to measure the pressure in liquids or gases by means of a flexible lens. Images of an object given by the dynamical lens are analyzed, and through the visibility of those images pressure is inferred.

© 2009 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(160.4670) Materials : Optical materials
(160.5470) Materials : Polymers

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 25, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: September 9, 2009
Published: September 23, 2009

Citation
Sergio Calixto, Francisco J. Sánchez-Marin, and M. E. Sánchez-Morales, "Pressure measurements through image analysis," Opt. Express 17, 17996-18002 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-20-17996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953). [CrossRef]
  2. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008). [CrossRef] [PubMed]
  3. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008). [CrossRef] [PubMed]
  4. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  5. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998)
  6. D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photonics Spectra 42, 74–79 (2008).
  7. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995). [CrossRef] [PubMed]
  8. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47(6), 843–848 (2008). [CrossRef] [PubMed]
  9. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  10. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12(301), 1–6 (2002). [CrossRef]
  11. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008). [CrossRef] [PubMed]
  12. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007). [CrossRef] [PubMed]
  13. E. Borra, P. Hickson, and J. Surdej, “The International Liquid Mirror Telescope,” Optics and Photonics News 20(4), 28–33 (2009). [CrossRef]
  14. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48(12), 2308–2314 (2009). [CrossRef] [PubMed]
  15. S. Calixto, F. J. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47(35), 6580–6585 (2008). [CrossRef] [PubMed]
  16. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005). [CrossRef]
  17. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006). [CrossRef] [PubMed]
  18. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express 14(4), 1497–1504 (2006). [CrossRef] [PubMed]
  19. E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, “Miniature all-glass robust pressure sensor,” Opt. Express 17(7), 5098–5106 (2009). [CrossRef] [PubMed]
  20. D. Song, J. Zou, S. X. Wei, S. Yang, and H.-L. Cui, “ “High-Sensitivity fiber Bragg grating pressure sensor using metal bellows,” Opt. Eng. 48(3), 034403 (2009). [CrossRef]
  21. http://www.dowcorning.com/content/rubber/silicone-rubber.aspx
  22. Federal Products Corporation, 1144 Eddy street, Providence Rhode Island 02940–9400 U.S.A.
  23. A. A. Michelson, Studies in Optics (The University of Chicago Press, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited