OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 18643–18650

Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton  »View Author Affiliations

Optics Express, Vol. 17, Issue 21, pp. 18643-18650 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present results from the first on-sky demonstration of a prototype astronomical integrated photonic spectrograph (IPS) using the Anglo-Australian Telescope near-infrared imaging spectrometer (IRIS2) at Siding Spring Observatory to observe atmospheric molecular OH emission lines. We have succeeded in detecting upwards of 27 lines, and demonstrated the practicality of the IPS device for astronomy. Furthermore, we present a laboratory characterization of the device, which is a modified version of a commercial arrayed-waveguide grating multiplexer. We measure the spectral resolution full-width-half-maximum to be 0.75 ± 0.05nm (giving R = λ/δλ = 2100 ± 150 at 1500nm). We find the free spectral range to be 57.4 ± 0.6nm and the peak total efficiency to be ~65%. Finally, we briefly discuss the future steps required to realize an astronomical instrument based on this technology concept.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(300.6190) Spectroscopy : Spectrometers
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Integrated Optics

Original Manuscript: July 14, 2009
Revised Manuscript: August 27, 2009
Manuscript Accepted: August 28, 2009
Published: October 1, 2009

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton, "Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy," Opt. Express 17, 18643-18650 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).
  2. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009). [CrossRef] [PubMed]
  3. S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008). [CrossRef]
  4. J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006). [CrossRef]
  5. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009). [CrossRef] [PubMed]
  6. M. K. Smit, “New focusing and dispersive planarcomponent based on an optical phased-array,” Electron. Lett. 24(7), 385–386 (1988). [CrossRef]
  7. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990). [CrossRef]
  8. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001). [CrossRef]
  9. H. Yamada, K. Takada, and S. Mitachi, “Crosstalk Reduction in a 10-GHz Spacing Arrayed-Waveguide Grating by Phase-Error Compensation,” J. Lightwave Technol. 16(3), 364–371 (1998). [CrossRef]
  10. P. Munoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001). [CrossRef] [PubMed]
  11. A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004). [CrossRef]
  12. D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).
  13. S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003). [CrossRef]
  14. C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004). [CrossRef]
  15. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007). [CrossRef] [PubMed]
  16. G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited