OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19190–19203

Spectrally selective thermal radiation based on intersubband transitions and photonic crystals

T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19190-19203 (2009)
http://dx.doi.org/10.1364/OE.17.019190


View Full Text Article

Enhanced HTML    Acrobat PDF (1557 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose to use a combination of intersubband transitions in semiconductor quantum wells with a two dimensional photonic crystal cavity to obtain narrow, strong thermal radiation spectra. Single peak thermal radiation is obtained due to the Lorentzian shape absorption spectrum of the intersubband transition and the single mode cavity embedded within the photonic band gap. We present an analysis based on the quantum Langevin theory. It is shown that local radiance of the narrow emission peak can be maximized to ~80% of the radiation from the blackbody devices when the photon dissipation rates of the cavity mode due to the intersubband absorption and that due to the radiation to the free space modes are equal. Guidelines for concrete device design are introduced, and an example device structure is shown.

© 2009 OSA

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(350.5610) Other areas of optics : Radiation
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 28, 2009
Revised Manuscript: September 29, 2009
Manuscript Accepted: October 5, 2009
Published: October 8, 2009

Citation
T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, "Spectrally selective thermal radiation based on intersubband transitions and photonic crystals," Opt. Express 17, 19190-19203 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Annalen der Physik 309(3), 553–563 (1901). [CrossRef]
  2. A. Einstein, “On the Quantum Theory of Radiation,” Verhandlunger der Deuchen Physikalischen Gesellsachaft 18, 318 (1916).
  3. J. F. Waymouth, “Where will the next generation of lamps come from?” J. Light Vis. Environ. 13, 51 (1989). [CrossRef]
  4. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001). [CrossRef]
  5. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003). [CrossRef]
  6. F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003). [CrossRef]
  7. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008). [CrossRef]
  8. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986). [CrossRef]
  9. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002). [CrossRef] [PubMed]
  10. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005). [CrossRef]
  11. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004). [CrossRef] [PubMed]
  12. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002). [CrossRef]
  13. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  14. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006). [CrossRef]
  15. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997). [CrossRef]
  16. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000). [CrossRef]
  17. L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985). [CrossRef]
  18. T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996). [CrossRef]
  19. D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998). [CrossRef]
  20. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  22. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  23. I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999). [CrossRef]
  24. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  25. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  26. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004). [CrossRef] [PubMed]
  27. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004). [CrossRef] [PubMed]
  28. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999). [CrossRef]
  29. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005). [CrossRef]
  30. K. Mochizuki, unpublished master’s thesis, Kyoto University, Electronic Science and Engineering, (2007).
  31. |gcav,21i|=[ωcav/2ℏVcavε0εrmax]1/2|M→|for the best position (see Eq. (28)). If we substitute εrmax = 3.4, Vcav=(λcav/2)3,ωcav=2πc/λcav and use λcav = 10μm and |M→| = 21eÅ 32, |gcav,21i|is evaluated to be ~5ns−1. In contrast, γSis reported to be of the order of 10~20 ps−1 even at 300 K and becomes larger for higher temperatures [33, 34]. Thus γS>>|gcav,21i| holds true for the devices under analysis.
  32. E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991). [CrossRef]
  33. S. K. Lyo, “Quasihole lifetimes in electron gases and electron-hole plasmas in semiconductor quantum wells,” Phys. Rev. B 43(9), 7091–7101 (1991). [CrossRef]
  34. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited