OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 21 — Oct. 12, 2009
  • pp: 19298–19310

Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals

Slawomir Ertman, Tomasz R. Wolinski, Dariusz Pysz, Ryszard Buczynski, Edward Nowinowski-Kruszelnicki, and Roman Dabrowski  »View Author Affiliations


Optics Express, Vol. 17, Issue 21, pp. 19298-19310 (2009)
http://dx.doi.org/10.1364/OE.17.019298


View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental investigations of microstructured fibers filled with liquid crystals (LCs) have so far been performed only by using host fibers made of the silica glass. In this paper, the host photonic crystal fiber (PCF) was made of the PBG08 high-refractive index glass (~1.95) that is much higher than silica glass index (~1.46) and also higher then both ordinary and extraordinary refractive indices of the majority of LCs. As a result, low-loss and index-guiding propagation is observed regardless of the LC molecules orientation. Attenuation of the host PCF was measured to be ~0.15 dB/cm and for the PCF infiltrated with 5CB LC was slightly higher (~0.19 dB/cm), resulting in a significant reduction to ~0.04 dB/cm of the scattering losses caused by the LC. Moreover, an external transverse electric field applied to the effective photonic liquid crystal fiber (PLCF) allowed for continuous phase birefringence tuning from 0 to 2·10−4.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3720) Optical devices : Liquid-crystal devices
(260.1440) Physical optics : Birefringence
(260.2110) Physical optics : Electromagnetic optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: July 13, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: September 16, 2009
Published: October 9, 2009

Citation
Slawomir Ertman, Tomasz R. Wolinski, Dariusz Pysz, Ryszard Buczynski, Edward Nowinowski-Kruszelnicki, and Roman Dabrowski, "Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals," Opt. Express 17, 19298-19310 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-19298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” Optical Fiber Communication Conference, 466–468 (2002)
  3. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, “Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber,” Opt. Commun. 204(1-6), 179–184 (2002). [CrossRef]
  4. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  5. T. R. Wolinski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Propagation properties of photonic crystals fibers filled with nematic liquid crystals,” Opto-Electronics Rev. 13(2), 59–64 (2005).
  6. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47(29), 5321–5324 (2008). [CrossRef] [PubMed]
  7. M. Y. Jeon and J. H. Kim, “Transmission Characteristics in Liquid-Crystal-Infiltrated Photonic Crystal Fibers,” Jpn. J. Appl. Phys. 47(No. 4), 2174–2175 (2008). [CrossRef]
  8. Q. Lu and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2005).
  9. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005). [CrossRef]
  10. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers,” Meas. Sci. Technol. 17(5), 985–991 (2006). [CrossRef]
  11. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13(19), 7483–7496 (2005). [CrossRef] [PubMed]
  12. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008). [CrossRef]
  13. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004). [CrossRef] [PubMed]
  14. V. K. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express 16(17), 12670–12676 (2008). [PubMed]
  15. L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009). [CrossRef] [PubMed]
  16. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32(12), 1707–1709 (2007). [CrossRef] [PubMed]
  17. T. R. Woliński, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and J. Wójcik, “Polarization effects in photonic liquid crystal fibers,” Meas. Sci. Technol. 18(10), 3061–3069 (2007). [CrossRef]
  18. T. R. Woliński, A. Czapla, S. Ertman, M. Tefelska, A. W. Domański, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39(12-13), 1021–1032 (2007). [CrossRef]
  19. S. Ertman, A. Czapla, T. R. Woliński, T. Nasiłowski, H. Thienpont, E. Nowinowski-Kruszelnicki, and R. Dąbrowski, “Light propagation in highly birefringent photonic liquid crystal fibers,” Opto-Electronics Review 17(2), 150–155 (2009). [CrossRef]
  20. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48(3), 497–503 (2009). [CrossRef] [PubMed]
  21. C. Kerbage and B. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10(5), 246–255 (2002). [PubMed]
  22. C. Zhang, G. Kai, Z. Wang, Y. Liu, T. Sun, S. Yuan, and X. Dong, “Tunable highly birefringent photonic bandgap fibers,” Opt. Lett. 30(20), 2703–2705 (2005). [CrossRef] [PubMed]
  23. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express 14(2), 914–925 (2006). [CrossRef] [PubMed]
  24. J. Sun and C. C. Chan, “Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers,” Opt. Lett. 32(14), 1989–1991 (2007). [CrossRef] [PubMed]
  25. G. Tartarini, M. Pansera, T. Tanggaard Alkeskjold, A. Bjarklev, and P. Bassi,“Polarization Properties of Elliptical-Hole Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 25(9), 2522–2530 (2007). [CrossRef]
  26. G. Ren, P. Shum, J. Hu, X. Yu, and Y. Gong, “Polarization-Dependent Bandgap Splitting and Mode Guiding in Liquid Crystal Photonic Bandgap Fibers,” J. Lightwave Technol. 26(22), 3650–3659 (2008). [CrossRef]
  27. S. Ertman, T. Nasilowski, T. R. Wolinski, and H. Thienpont, “Highly birefringent microstructured fiber selectively filled with lossy material,” Photon. Lett. of Poland 1(1), 13–15 (2009).
  28. D. Lorenc, M. Aranyosiova, R. Buczyński, R. Stępień, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers,” Appl. Phys. B: Lasers Opt 93(2-3), 531–538 (2008). [CrossRef]
  29. J. Li and S. T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004). [CrossRef]
  30. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000). [CrossRef]
  31. S. Ertman, T. R. Woliński, A. Czapla, K. Nowecka, E. Nowinowski-Kruszelnicki, and J. Wójcik, “Liquid crystal molecular orientation in photonic liquid crystal fibers with photopolymer layers,” Proc. SPIE 6587, 658706 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited