OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20012–20020

In-plane all-photonic transduction with differential splitter using double-step rib waveguide for photonic microcantilever arrays

Jong Wook Noh, Ryan R. Anderson, Seunghyun Kim, Weisheng Hu, and Gregory P. Nordin  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20012-20020 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a differential splitter consisting of an asymmetric double-step multimode rib waveguide and a Y-branch splitter for in-plane photonic transduction of photonic microcantilever deflection. Arrays of photonic microcantilevers are integrated with differential splitters and an optical waveguide network to demonstrate uniformity and sensitivity of transduction. Measurement results from multiple arrays indicate a sensitivity of 0.32×10−3 nm−1 and minimum detectable deflection of 141 pm for a 3.5 Hz measurement bandwidth.

© 2009 OSA

ToC Category:
Integrated Optics

Original Manuscript: September 21, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 12, 2009
Published: October 19, 2009

Jong Wook Noh, Ryan R. Anderson, Seunghyun Kim, Weisheng Hu, and Gregory P. Nordin, "In-plane all-photonic transduction with differential splitter using double-step rib waveguide for photonic microcantilever arrays," Opt. Express 17, 20012-20020 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. Güntherodt, C. Gerber, and J. K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics,” Science 288(5464), 316–318 (2000). [CrossRef] [PubMed]
  2. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen (PSA) using microcantilevers,” Nat. Biotechnol. 19(9), 856–860 (2001). [CrossRef] [PubMed]
  3. J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83(16), 3428–3430 (2003). [CrossRef]
  4. L. Fadel, F. Lochon, I. Dufour, and O. Francais, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14(9), S23–S30 (2004). [CrossRef]
  5. G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett. 56(9), 930–933 (1986). [CrossRef] [PubMed]
  6. M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62(8), 834–836 (1993). [CrossRef]
  7. M. Sepaniak, P. Datskos, N. Lavrik, and C. Tipple, “Peer Reviewed: Microcantilever Transducers: A new Approach in Sensor Technology,” Anal. Chem. 74(21), 568–575, A–575 (2002). [CrossRef]
  8. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7(10), 1238–1255 (2007). [CrossRef] [PubMed]
  9. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004). [CrossRef]
  10. D. Raorane, S.-H. S. A. U. M. A. Lim, and A. Majumdar, “Nanomechanical Assay to Investigate the Selectivity of Binding Interactions between Volatile Benzene Derivatives,” Nano Lett. 8(8), 2229–2235 (2008). [CrossRef] [PubMed]
  11. J. W. Noh, R. Anderson, S. Kim, J. Cardenas, and G. P. Nordin, “In-plane photonic transduction of silicon-on-insulator microcantilevers,” Opt. Express 16(16), 12114–12123 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12114 . [CrossRef] [PubMed]
  12. W. Hu, R. Anderson, Y. Qian, J. Song, J. W. Noh, S. Kim, and G. P. Nordin, “Demonstration of microcantilever array with simultaneous readout using an in-plane photonic transduction method,” Rev. Sci. Instrum. 80(8), 085101–085107 (2009). [CrossRef] [PubMed]
  13. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L. M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” Lightwave Technology, Journalism 24(5), 2132–2138 (2006). [CrossRef]
  14. J. Thaysen, A. D. Yal inkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D Appl. Phys. 35(21), 2698–2703 (2002). [CrossRef]
  15. X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92(10), 6296–6301 (2002). [CrossRef]
  16. R. L. Gunter, R. Zhine, W. G. Delinger, K. Manygoats, A. Kooser, and T. L. Porter, “Investigation of DNA sensing using piezoresistive microcantilever probes,” Sensors Journal, IEEE 4(4), 430–433 (2004). [CrossRef]
  17. X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of High-Sensitivity Cantilever and Its Monolithic Integration With CMOS Circuits,” Sensors Journal, IEEE 7(4), 489–495 (2007). [CrossRef]
  18. C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” Sensors Journal, IEEE 5(3), 411–418 (2005). [CrossRef]
  19. V. Tabard-Cossa, M. Godin, L. Y. Beaulieu, and P. Grutter, “A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions,” Sens. Actuators B Chem. 107(1), 233–241 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited