OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20191–20202

Modeling surface plasmon-polariton gain in planar metallic structures

Israel De Leon and Pierre Berini  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20191-20202 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amplification of the single-interface and long-range surface plasmon-polariton modes is studied in planar metallic structures incorporating gain media formed by Rhodamine 6G dye molecules in solution. We employ a theoretical model that accounts for the nonuniformity of the gain medium close to the metal surface due to position-dependent dipole lifetime and pump irradiance. The results of this model are used as a baseline for a comparative study against two simplified models: one neglects the position-dependent dipole lifetime while the other assumes a uniform gain medium. The discrepancies between the models are explained in terms of the mode overlap with the gain distribution near the metal. For the cases under analysis, the simplified models estimate the required pump irradiance with deviation factors that vary from 1.45 at the lossless conditions to 8 for gains near saturation. The relevance of describing properly the amount of gain interacting with the SPP mode and the role played by the dipole quantum efficiency are discussed.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.4480) Optoelectronics : Optical amplifiers
(310.6805) Thin films : Theory and design

ToC Category:
Optics at Surfaces

Original Manuscript: July 23, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 12, 2009
Published: October 21, 2009

Israel De Leon and Pierre Berini, "Modeling surface plasmon-polariton gain in planar metallic structures," Opt. Express 17, 20191-20202 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  3. D. J. Bergman, and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  4. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 17, 4072 (2004). [CrossRef]
  5. I. Avrutsky, "Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain," Phys. Rev. B 70, 155416 (2004). [CrossRef]
  6. S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Comm. 258, 295 (2006). [CrossRef]
  7. M. Z. Alam, J. Meier, J.S. Aitchison, and M. Mojahedi, "Gain assisted surface plasmon polariton in quantum well structures," Opt. Express 15, 176 (2007). [CrossRef] [PubMed]
  8. T. Okamoto, F. H’Dhili, and S. Kawata, "Towards plasmonic band gap laser," App. Phys. Lett. 85, 3968 (2004). [CrossRef]
  9. J. Seidel, S. Grafstrom, and L. Eng, "Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution," Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  10. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, "Compensation of loss in propagating surface plasmons polariton by gain in adjacent dielectric medium," Opt. Express 16, 1385 (2008). [CrossRef] [PubMed]
  11. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Observation of Stimulated Emission of Surface Plasmon Polaritons," Nano Lett. 8, 3998 (2008) [CrossRef] [PubMed]
  12. M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. Oei, R. Notzel, C. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express. 17, 11107 (2009). [CrossRef] [PubMed]
  13. J. Grandidier, G. Colas des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C.  Weeber, C. Finot, and A. Dereux, "Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength," Nano Lett. 9, 2935 (2009). [CrossRef] [PubMed]
  14. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195 (1984). [CrossRef]
  15. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661 (1998). [CrossRef]
  16. G. Winter, S. Wedge, and W. L. Barnes, "Can lasing at visible wavelength be achieved using the low-loss long range surface plasmon-polariton mode?," New J. Phys. 8, 125 (2006). [CrossRef]
  17. T. Okamoto, F. H’Dhili, and S. Kawata, "Plasmonic crystal for efficient energy transfer from fluorescent molecules to long-range surface plasmons," Opt. Express. 17, 8294 (2009). [CrossRef] [PubMed]
  18. I. De Leon and P. Berini, "Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media," Phys. Rev. B 78, 161401 (2008). [CrossRef]
  19. J. J. Burke, G. I. Stegeman, and T. Tamir,"Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186 (1986). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, New York, 1985).
  21. F. Mikes, Y. Yang, I. Teraoka, T. Ishigure, Y. Koike, and Y. Okamoto, "Synthesis and Characterization of an Amorphous Perfluoropolymer Poly(perfluoro-2-methylene-4-methyl-13-dioxolane)," Macromolecules 38, 4237 (2005).
  22. I. Z. Kozma, P. Krok, and E. Riedle, "Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet," J. Opt. Soc. Am. B 22, 1479 (2005). [CrossRef]
  23. A. Penzkofer and W. Leupacher, "Fluorescence behaviour of highly concentrated rhodamine 6G solutions," J. Lumin. 37, 61 (1978). [CrossRef]
  24. W. Falkenstein, A. Penzkofer, and W. Kaiser, "Amplified spontaneous emission in rhodamine dyes: Generation of picosecond light pulses and determination of excited state absorption and relaxation," Opt. Commun. 27, 151 (1978). [CrossRef]
  25. E. Sahar and D. Treves, "Excited singlet-state absorption in dyes and their effect on dye lasers," IEEE J. Quantum Electron. QE-13, 962 (1977). [CrossRef]
  26. H. J. Eichler, U. Klein, and D. Langhans, "Measurement of orientational relaxation times of rhodamine 6G with a streak camera," Chem. Phys. Lett. 67, 21 (1979). [CrossRef]
  27. L. G. Nair, "Dye Lasers," Prog. Quantum Electron. 7, 153 (1982). [CrossRef]
  28. P. Yeh, Optical waves in layered media (Wiley, New York, 1988).
  29. S. Astilean and W. L. Barnes, "Quantum efficiency and the photonic control of molecular fluorescence in the solid state," App. Phys. B 75, 591 (2002). [CrossRef]
  30. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," Opt. Express 7, 260 (2000). [CrossRef] [PubMed]
  31. P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008). [CrossRef]
  32. Y. Jee, M. F. Becker, and R. M. Walser, "Laser-induced damage on single-crystal metal surfaces," J. Opt. Soc. Am. B 5, 648 (1988). [CrossRef]
  33. W. Svendsen, O. Ellegaard, and J. Schou, "Laser ablation deposition measurements from silver and nickel," Appl. Phys. A 63247 (1996). [CrossRef]
  34. A. V. Fedenev, E. I. Lipatov, V. F. Tarasenko, V. M. Orlovskii, M. A. Shulepov, N. N. Koval, and I. M. Goncharenko, "Disturbance of adhesion upon ablation of thin films by laser pulses," Quantum Electron. 34, 375 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (489 KB)     
» Media 2: MOV (302 KB)     
» Media 3: MOV (512 KB)     
» Media 4: MOV (310 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited