OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20256–20265

Transmission line model and fields analysis of metamaterial absorber in the terahertz band

Qi-Ye Wen, Yun-Song Xie, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Xun Li, and Ying-Li Liu  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20256-20265 (2009)
http://dx.doi.org/10.1364/OE.17.020256


View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

© 2009 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(040.2235) Detectors : Far infrared or terahertz
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Metamaterials

History
Original Manuscript: September 16, 2009
Revised Manuscript: October 19, 2009
Manuscript Accepted: October 19, 2009
Published: October 21, 2009

Citation
Qi-Ye Wen, Yun-Song Xie, Huai-Wu Zhang, Qing-Hui Yang, Yuan-Xun Li, and Ying-Li Liu, "Transmission line model and fields analysis of metamaterial absorber in the terahertz band," Opt. Express 17, 20256-20265 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006). [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006). [CrossRef] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  8. S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009). [CrossRef] [PubMed]
  9. A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008). [CrossRef]
  10. F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005). [CrossRef]
  11. C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications (John Wiley & Sons, 2005). [CrossRef]
  12. H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008). [CrossRef]
  13. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008). [CrossRef]
  14. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009). [CrossRef]
  15. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009). [CrossRef]
  16. Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009). [CrossRef]
  17. A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008). [CrossRef]
  18. L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008). [CrossRef]
  19. F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006). [CrossRef]
  20. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005). [CrossRef]
  21. W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007). [CrossRef]
  22. J. Han, A. Lakhtakia, and C. W. Qiu, "Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability," Opt. Express 16, 14390-14396 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited