OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20301–20306

Direct near-field optical imaging of UV bowtie nanoantennas

Liangcheng Zhou, Qiaoqiang Gan, Filbert J. Bartoli, and Volkmar Dierolf  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20301-20306 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (3169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report near-field optical imaging of bowtie nanoantennas obtained using a UV near-field scanning optical microscope (NSOM). A strong and highly localized UV intensity profile was observed at the antenna gap due to the localized surface plasmon resonance. The relationship of optical field enhancement and antenna size is discussed based on numerical simulations and NSOM experiments.

© 2009 Optical Society of America

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: September 8, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 20, 2009
Published: October 22, 2009

Liangcheng Zhou, Qiaoqiang Gan, Filbert J. Bartoli, and Volkmar Dierolf, "Direct near-field optical imaging of UV bowtie nanoantennas," Opt. Express 17, 20301-20306 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  2. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004). [CrossRef]
  3. L. Wang and X. F. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  4. A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006). [CrossRef] [PubMed]
  5. L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006). [CrossRef] [PubMed]
  6. E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006). [CrossRef]
  7. L. Wang, E. X. Jin, S. M. Uppuluri, and X. F. Xu, "Contact optical nanolithography using nanoscale C-shaped apertures," Opt. Express 14, 9902-9908 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9902 [CrossRef] [PubMed]
  8. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002). [CrossRef]
  9. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002). [CrossRef]
  10. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 93120 (2006). [CrossRef]
  11. L. Feng, D. V. Orden, M. Abashin, Q. Wang, Y. Chen, V. Lomakin and Y. Fainman, "Nanoscale optical field localization by resonantly focused plasmons," Opt. Express 17, 4824 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4824 [CrossRef] [PubMed]
  12. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13272 [CrossRef] [PubMed]
  13. A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008). [CrossRef]
  14. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008). [CrossRef] [PubMed]
  15. Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008). [CrossRef]
  16. A. Polman, "Plasmonics Applied," Science 322, 868 (2008). [CrossRef] [PubMed]
  17. Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006). [CrossRef] [PubMed]
  18. A. Sandhu, "The future of ultraviolet LEDs," Nat. Photonics 1, 38 (2007). [CrossRef]
  19. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, "Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture," Opt. Express 16, 2584-2589 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2584 [CrossRef] [PubMed]
  20. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008). [CrossRef] [PubMed]
  21. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003) [CrossRef] [PubMed]
  22. Q. Gan, L. Zhou, V. Dierolf, and F. J. Bartoli, "Direct mapping of the UV surface plasmons," Opt. Lett. 34, 1324 (2009). [CrossRef] [PubMed]
  23. Fullwave simulation with the commercial FDTD solver, Fullwave (Rsoft Inc.), is used to calculate the dispersion relations of the Al structures.
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985), Vol. 1, p. 398.
  25. J. C. Russ, The Image Processing Handbook (CRC Press, FL, 2007), p. 206.
  26. H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited