OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20327–20332

Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide

Zheyu Fang, Shan Huang, Feng Lin, and Xing Zhu  »View Author Affiliations

Optics Express, Vol. 17, Issue 22, pp. 20327-20332 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the color-tuning and switching optical transport characters of CdS hybrid plasmonic waveguide by using near-field optical microscopy. The guided photoluminescence spectra under various waveguide lengths demonstrate a spectroscopic red-shift for the part of CdS nanoribbon placed on the sapphire substrate and an energy compensation at Ag film. Surface plasmon polariton leakage and radiation are explored by near-field characterizations. Finite difference time domain simulations have good agreement with the experimental observations of subwavelength confinement and propagation. With a strong end facet emission, the suggested hybrid plasmonic waveguide can serve as a color-changeable optical nanosource in integrated photonic devices.

© 2009 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: September 14, 2009
Revised Manuscript: October 10, 2009
Manuscript Accepted: October 16, 2009
Published: October 23, 2009

Zheyu Fang, Shan Huang, Feng Lin, and Xing Zhu, "Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide," Opt. Express 17, 20327-20332 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer, New York, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. Z. Y. Fang, T. Dai, Q. Fu, B. Zhang, and X. Zhu, “Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal,” J. Microsc. 235(2), 138–143 (2009). [CrossRef] [PubMed]
  4. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  5. Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface Plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009). [CrossRef]
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007). [CrossRef]
  7. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008). [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006). [CrossRef]
  9. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008). [CrossRef]
  11. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13585 . [CrossRef] [PubMed]
  12. J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32(5), 435–445 (1999). [CrossRef]
  13. R. F. Outon, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  14. Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008). [CrossRef]
  15. R. F. Outon, V. J. Sorger, T. Zentgraf. R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature, doi: 10.1038/nature08364.
  16. L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008). [CrossRef] [PubMed]
  17. B. Ullrich, R. Schroeder, W. Graupner, and S. Sakai, “The influence of self-absorption on the photoluminescence of thin film CdS demonstrated by two-photon absorption,” Opt. Express 9(3), 116–120 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-3-116 . [CrossRef] [PubMed]
  18. A. L. Pan, W. C. Zhou, E. S. P. Leong, R. Liu, A. H. Chin, B. S. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett. 9(2), 784–788 (2009). [CrossRef] [PubMed]
  19. A. L. Pan, X. Wang, P. B. He, Q. L. Zhang, Q. Wan, M. Zacharias, X. Zhu, and B. S. Zou, “Color-changeable optical transport through Se-doped CdS 1D nanostructures,” Nano Lett. 7(10), 2970–2975 (2007). [CrossRef] [PubMed]
  20. A. L. Pan, D. Liu, R. B. Liu, F. F. Wang, X. Zhu, and B. S. Zou, “Optical waveguide through CdS nanoribbons,” Small 1(10), 980–983 (2005). [CrossRef]
  21. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited