OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 20584–20597

Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA

Perrine Berger, Jérôme Bourderionnet, Mehdi Alouini, Fabien Bretenaker, and Daniel Dolfi  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 20584-20597 (2009)
http://dx.doi.org/10.1364/OE.17.020584


View Full Text Article

Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a predictive model describing harmonic generation and intermodulation distortions in semiconductor optical amplifiers (SOAs). This model takes into account the variations of the saturation parameters along the propagation axis inside the SOA, and uses a rigorous expression of the gain oscillations harmonics. We derived the spurious-free dynamic range (SFDR) of a slow light delay line based on coherent population oscillation (CPO) effects, in a frequency range covering radar applications (from 40kHz up to 30GHz), and for a large range of injected currents. The influence of the high order distortions in the input microwave spectrum is discussed, and in particular, an interpretation of the SFDR improvement of a Mach-Zehnder modulator by CPOs effects in a SOA is given.

© 2009 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Optoelectronics

History
Original Manuscript: July 29, 2009
Revised Manuscript: October 14, 2009
Manuscript Accepted: October 17, 2009
Published: October 23, 2009

Citation
Perrine Berger, Jérôme Bourderionnet, Mehdi Alouini, Fabien Bretenaker, and Daniel Dolfi, "Theoretical Study of the Spurious-Free Dynamic Range of a Tunable Delay Line based on Slow Light in SOA," Opt. Express 17, 20584-20597 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20584


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Yao, "Microwave Photonics," J. Lightwave Technol. 27,314-335 (2009). [CrossRef]
  2. D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35,5293-5300 (1996). [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006). [CrossRef]
  4. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, A. E. Willner, "Fiber-Based Slow-Light Technologies," J. Lightwave Technol. 26, 3752-3762 (2008). [CrossRef]
  5. Y. Chen, W. Xue, F. Ohman, J. Mørk, "Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides," J. Lightwave Technol. 26, 3734-3743 (2008). [CrossRef]
  6. M. González Herráez, K. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006). [CrossRef]
  7. W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.
  8. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988). [CrossRef]
  9. C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006). [CrossRef]
  10. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4801-4807 (2006).
  11. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005). [CrossRef]
  12. H. Zmuda, E. N. Toughlian, Photonic Aspects of modern radar, Artech House, 1994.
  13. J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003). [CrossRef]
  14. A. Sharaiha, "Harmonic and Intermodulation Distortion Analysis by Perturbation and Harmonic Balance Method for In-Line Photodetection in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 10, 421-423 (1998). [CrossRef]
  15. E. Udvary, T. Berceli, T. Marozsak, A. Hilt, "Semiconductor Optical Amplifiers in Analog Optical Links," in Proc. of IEEE Transparent Optical Network Conf., 2003, paper ThC3.
  16. J. Herrera, F. Ramos, and J. Marti, "Nonlinear distortion generated by semiconductor optical amplifier boosters in analog optical system," Opt. Lett. 28, 1102-1104 (2003). [CrossRef]
  17. T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990). [CrossRef]
  18. S. O´ Ó Dúill, R. F. O Dowd, G. Eisenstein, "On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
  19. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published
  20. Y. Shi, L. Yan, A. E. Willner, "High-Speed Electrooptic Modulator Characterization Using Optical Spectrum Analysis," J. Lightwave Technol. 21, 2358-2367 (2003). [CrossRef]
  21. N. Breuil, M. Dispenza, L. Morvan, A.-M. Fiorello, S. Tonda, D. Dolfi, M. Varasi, J. Chazelas, "New optical modulation schemes applied to local oscillator distribution in radar systems," in Proc. of IEEE Microwave Photonics conf. 119-122, (2004).
  22. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001). [CrossRef]
  23. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.
  24. D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002). [CrossRef]
  25. C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited