OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20747–20755

Vertical Plasmonic Mach-Zehnder interferometer for sensitive optical sensing

Qiaoqiang Gan, Yongkang Gao, and Filbert J. Bartoli  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20747-20755 (2009)
http://dx.doi.org/10.1364/OE.17.020747


View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Vertical plasmonic Mach-Zehnder Interferometers are investigated theoretically and experimentally, and their potential for ultra-sensitive optical sensing is discussed. Plasmonic interferences arise from coherently coupled pairs of subwavelength slits, illuminated by a broadband optical source, and this interference modulates the intensity of the far-field scattering spectrum. Experimental results, obtained using a simple experimental setup, are presented to validate theoretically predicted interferences introduced by the surface plasmon modes on top and bottom surfaces of a metal film. By observing the wavelength shift of the peaks or valleys of the interference pattern, this highly compact device has the potential to achieve a very high sensitivity relative to other nanoplasmonic architectures reported.

© 2009 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(310.2790) Thin films : Guided waves

ToC Category:
Sensors

History
Original Manuscript: September 29, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 12, 2009
Published: October 28, 2009

Citation
Qiaoqiang Gan, Yongkang Gao, and Filbert J. Bartoli, "Vertical Plasmonic Mach-Zehnder interferometer for sensitive optical sensing," Opt. Express 17, 20747-20755 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006). [CrossRef] [PubMed]
  5. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008). [CrossRef] [PubMed]
  6. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface Plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Optim. Lett. 31(10), 1528 (2006). [CrossRef]
  7. A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced Plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007). [CrossRef]
  8. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  9. A. De Leebeeck, L. K. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  10. J. C. Sharpe, J. S. Mitchell, L. Lin, N. Sedoglavich, and R. J. Blaikie, “Gold nanohole array substrates as immunobiosensors,” Anal. Chem. 80(6), 2244–2249 (2008). [CrossRef] [PubMed]
  11. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008). [CrossRef]
  12. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007). [CrossRef] [PubMed]
  13. J. Ji, J. G. O’Connell, D. J. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008). [CrossRef] [PubMed]
  14. H. Im, A. Lesuffleur, N. C. Lindquist, and S. H. Oh, “Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” Anal. Chem. 81(8), 2854–2859 (2009). [CrossRef] [PubMed]
  15. J. Ji, J. C. Yang, and D. N. Larson, “Nanohole arrays of mixed designs and microwriting for simultaneous and multiple protein binding studies,” Biosens. Bioelectron. 24(9), 2847–2852 (2009). [CrossRef] [PubMed]
  16. D. Braun and P. Fromherz, “Fluorescence interferometry of neuronal cell adhesion on microstructured silicon,” Phys. Rev. Lett. 81(23), 5241–5244 (1998). [CrossRef]
  17. L. Moiseev, M. S. Unlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, “DNA conformation on surfaces measured by fluorescence self-interference,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2623–2628 (2006). [CrossRef] [PubMed]
  18. A. Bilenca, J. Cao, M. Colice, A. Ozcan, B. Bouma, L. Raftery, and G. Tearney, “Fluorescence interferometry: principles and applications in biology,” Ann. N. Y. Acad. Sci. 1130(1), 68–77 (2008). [CrossRef] [PubMed]
  19. M. Dogan, A. Yalcin, S. Jain, M. B. Goldberg, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging,” IEEE J. Sel. Top. Quantum Electron. 14(1), 217–225 (2008). [CrossRef]
  20. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 3125–3130 (2009). [CrossRef] [PubMed]
  21. F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach–Zehnder interferometer on silicon,” Sens. Actuators B Chem. 44(1-3), 350–355 (1997). [CrossRef]
  22. F. Prieto, B. Sepulveda, A. Calle, and A LloberaC Dominguez, A Abad, A Montoya, and L. M Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  23. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dommguez, and L. M. Lechuga, “Integrated Mach–Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003). [CrossRef]
  24. E. F. Schipper, A. M. Brugman, L. M. Lechuga, R. P. H. Kooyman, J. Greve, and C. Dominguez, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuators B Chem. 40(2-3), 147–153 (1997). [CrossRef]
  25. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003). [CrossRef] [PubMed]
  26. M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329(2), 190–198 (2004). [CrossRef] [PubMed]
  27. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317(5845), 1732–1736 (2007). [CrossRef] [PubMed]
  28. E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008). [CrossRef] [PubMed]
  29. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005). [CrossRef] [PubMed]
  30. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface Plasmon interferometry: measuring group velocity of surface plasmons,” Optim. Lett. 32(10), 1235 (2007). [CrossRef]
  31. X. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optim. Lett. 34(3), 392 (2009). [CrossRef]
  32. M. H. Lee, H. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009). [CrossRef] [PubMed]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Aacademic, Orlando, LF, 1985), Vol. 1.
  34. Z. Fu, Q. Gan, K Gao, G Wang, Z Pan, and F Bartoli,. “Numerical Investigation of a Bidirectional Wave Coupler Based on Surface Plasmonic Polarition Bragg Gratings in Near Infrared Spectrum,” J. Lightwave Technol. 26, 3699 (2008). [CrossRef]
  35. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metal grating structures,” Phys. Rev. Lett. 100(25), 256803 (2008). [CrossRef] [PubMed]
  36. Q. Gan, Y. J. Ding, and F. J. Bartoli, “Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009). [CrossRef] [PubMed]
  37. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. B 23(7), 1608 (2006). [CrossRef]
  38. H. W. Kihm, G. K. Lee, D. S. Kim, J. H. Kang, and P. Q. Han, “Control of surface Plasmon generation efficiency by silt-width tuning,” Appl. Phys. Lett. 92(5), 051115 (2008). [CrossRef]
  39. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006). [CrossRef]
  40. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys. 2(8), 551–556 (2006). [CrossRef]
  41. F. J. García de Abajo and F. J Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  42. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72(6), 064401 (2009). [CrossRef]
  43. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, A microscopic view of the electromagnetic properties of sub-λ metallic surfaces, Surf. Sci. Rep. (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited