OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20945–20951

Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures

Shoji Maruo, Takuya Hasegawa, and Naoki Yoshimura  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 20945-20951 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In high-precision two-photon microfabrication of three-dimensional (3-D) polymeric microstructures, supercritical CO2 drying was employed to reduce surface tension, which tends to cause the collapse of micro/nano structures. Use of supercritical drying allowed high-aspect ratio microstructures, such as micropillars and cantilevers, to be fabricated. We also propose a single-anchor supporting method to eliminate non-uniform shrinkage of polymeric structures otherwise caused by attachment to the substrate. Use of this method permitted frame models such as lattices to be produced without harmful distortion. The combination of supercritical CO2 drying and the single-anchor supporting method offers reliable high-precision microfabrication of sophisticated, fragile 3-D micro/nano structures.

© 2009 OSA

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(190.4180) Nonlinear optics : Multiphoton processes
(160.5335) Materials : Photosensitive materials

ToC Category:
Laser Microfabrication

Original Manuscript: October 2, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 27, 2009
Published: November 2, 2009

Shoji Maruo, Takuya Hasegawa, and Naoki Yoshimura, "Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures," Opt. Express 17, 20945-20951 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999). [CrossRef]
  2. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006). [CrossRef] [PubMed]
  3. A. Ishikawa, T. Tanaka, and S. Kawata, “Magnetic excitation of magnetic resonance in metamaterials at far-infrared frequencies,” Appl. Phys. Lett. 91(11), 113118 (2007). [CrossRef]
  4. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006). [CrossRef]
  5. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009). [CrossRef]
  6. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001). [CrossRef] [PubMed]
  7. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008). [CrossRef]
  8. S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009). [CrossRef]
  9. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef] [PubMed]
  10. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  11. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009). [CrossRef] [PubMed]
  12. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007). [CrossRef]
  13. D.-Y. Yang, S. H. Park, T. W. Lim, H.-J. Kong, S. W. Yi, H. K. Yang, and K.-S. Lee, “Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization,” Appl. Phys. Lett. 90(1), 013113 (2007). [CrossRef]
  14. T. Hasegawa, and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int. Symp. on Micro-nanomechatronics and Human Science (MHS) 2007, 12–15 (2007).
  15. G. L. Weibel and C. K. Ober, “An overview of supercritical CO2 applications in microelectronics processing,” Microelectron. Eng. 65(1-2), 145–152 (2003). [CrossRef]
  16. C.-J. Kim, J. Y. Kim, and B. Sridharan, “Comparative evaluation of drying techniques for surface micromachining,” Sens. Actuators A Phys. 64(1), 17–26 (1998). [CrossRef]
  17. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology 19(5), 055303 (2008). [CrossRef] [PubMed]
  18. H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85(17), 3708–3710 (2004). [CrossRef]
  19. A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, in Laser ablation and its applications, C. Phipps, ed., (Springer Science + Business Media LLC, NY, 2007). Chap. 6, p.145–147.
  20. T. W. Lim, Y. Son, S. Y. Yang, T. A. Pham, D. P. Kim, B. I. Yang, K. S. Lee, and S. H. Park, “Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders,” Int. J. Appl. Ceram. Technol. 5(3), 258–264 (2008). [CrossRef]
  21. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009). [CrossRef] [PubMed]
  22. S. Maruo, T. Hasegawa and N. Yoshimura “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys. 48, 06FH05 (2009).
  23. S.-H. Park, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, E.-S. Lee, D.-Y. Yang, and K.-S. Lee, “Adaptive bonding technique for precise assembly of three-dimensional microstructures,” Appl. Phys. Lett. 90(23), 233109 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited